981 resultados para acid maltase deficiency
Resumo:
Introduction Maternal folic acid deficiency is the most important metabolic factor in the etiology of neural tube defects (NTD) and is reduced by ethanol, which is extensively consumed by young women. Objective The objective of the study was to determine whether folic acid supplementation in dietary saccharose is efficient in the prevention NTD induced by ethanol in fetuses of Swiss mice. Materials and methods Pregnant mice were divided into four groups of six animals each: control (C), ethanol (E), deficient-supplemented (DS), and deficient-supplemented+ethanol (DSE). Groups C and E received commercial mouse chow (containing 3 mg/kg folic acid) throughout the experiment, while groups DS and DSE received a folic acid-free diet with the addition of saccharose supplemented with folic acid (2 mg/kg folic acid) in water. Group E and DSE animals received ethanol (4 g/kg) administered intraperitoneally from the seventh to the ninth gestational day (gd) and were euthanized on the 18th gd, while groups C and DS received saline. Results Congenital anomalies were observed in groups E and DSE. The fetal weight and length of the animals in group E were lower than in groups C and DS and, in group DSE, were lower than in groups C and DS. The placental diameter of group E was smaller than that of group C, and the placental weight of group C animals was lower than that of groups E, DSE, and DS. Conclusion The study demonstrated that dietary supplementation with folate in saccharose is an accessible means of consumption that could be further diffused but in an increased dose than recommended to reduce the teratogenic effects of ethanol.
Resumo:
Objectives Alterations in the enzymes involved in homocysteine (Hcy) metabolism or vitamin deficiency could play a role in coronary artery disease (CAD) development. This study investigated the influence of MTHFR and MTR gene polymorphisms, plasma folate and MMA on Hcy concentrations and CAD development. MMA and folate concentrations were also investigated according to the polymorphisms. Methods Two hundred and eighty-three unrelated Caucasian individuals undergoing coronary angiography (175 with CAD and 108 non-CAD) were assessed in a case-control study. Plasma Hcy and MMA were measured by liquid chromatography/tandem mass spectrometry. Plasma folate was measured by competitive immunoassay. Dietary intake was evaluated using a nutritional questionnaire. Polymorphisms MTHFR and MTR were investigated by polymerase chain reaction (PCR) followed by enzyme digestion or allele-specific PCR. Results Hcy mean concentrations were higher in CAD patients compared to controls, but below statistical significance (P = 0.246). Increased MMA mean concentrations were frequently observed in the CAD group (P = 0.048). Individuals with MMA concentrations > 0.5 mu mol/l (vitamin B(12) deficiency) were found only in the CAD group (P = 0.004). A positive correlation between MMA and Hcy mean concentrations was observed in both groups, CAD (P = 0.001) and non-CAD (P = 0.020). MMA mean concentrations were significantly higher in patients with hyperhomocysteinemia in both groups, CAD and non-CAD (P = 0.0063 and P = 0.013, respectively). Folate mean concentration was significantly lower in carriers of the wild-type MTHFR 1298AA genotype (P = 0.010). Conclusion Our results suggest a correlation between the MTHFR A1298C polymorphism and plasma folate concentration. Vitamin B(12) deficiency, reflected by increased MMA concentration, is an important risk factor for the development both of hyperhomocysteinemia and CAD.
Resumo:
Context: Melanocortin receptor 4 (MC4R) deficiency is characterized by increased linear growth greater than expected for the degree of obesity. Objective: The objective of the investigation was to study the somatotroph axis in obese MC4R-deficient patients and equally obese controls. Patients and Methods: We obtained anthropometric measurements and insulin concentrations in 153 MC4R-deficient subjects and 1392 controls matched for age and severity of obesity. We measured fasting IGF-I, IGF-II, IGF binding protein (IGFBP)-1, IGFBP-3, and acid-labile subunit levels in a subset of 33 MC4R-deficient patients and 36 control subjects. We examined pulsatile GH secretion in six adult MC4R-deficient subjects and six obese controls. Results: Height so score was significantly greater in MC4R-deficient children under 5 yr of age compared with controls (mean +/- SEM: 2.3 +/- 0.06 vs. 1.8 +/- 0.04, P < 0.001), an effect that persisted throughout childhood. Final height (cm) was greater in MC4R-deficient men (mean +/- SEM 173 +/- 2.5 vs. 168 +/- 2.1, P < 0.001) and women (mean 165 +/- 2.1 vs. 158 +/- 1.9, P < 0.001). Fasting IGF-I, IGF-II, acid-labile subunit, and IGFBP-3 concentrations were similar in the two groups. GH levels were markedly suppressed in obese controls, but pulsatile GH secretion was retained in MC4R deficiency. The mean maximal GH secretion rate per burst (P < 0.05) and mass per burst (P < 0.05) were increased in MC4R deficiency, consistent with increased pulsatile and total GH secretion. Fasting insulin levels were markedly elevated in MC4R-deficient children. Conclusions: In MC4R deficiency, increased linear growth in childhood leads to increased adult final height, greater than predicted by obesity alone. GH pulsatility is maintained in MC4R deficiency, a finding consistent with animal studies, suggesting a role for MC4R in controlling hypothalamic somatostatinergic tone. Fasting insulin levels are significantly higher in children carrying MC4R mutations. Both of these factors may contribute to the accelerated growth phenotype characteristic of MC4R deficiency. (J Clin Endocrinol Metab 96: E181-E188, 2011)
Resumo:
Background/Objectives: Vitamin A deficiency (VAD) is a world public health problem contributing to the increase in childhood morbidity and mortality in developing countries and severe deficiency of vitamin A may lead to xerophthalmia and blindness. The objective of this study was to determine the prevalence of VAD among Brazilian school-aged children attended at a primary health unit and to verify if some considered risk factor was associated with VAD in this group. Subjects/Methods: A descriptive prospective transverse study was conducted on 103 randomly selected children. A total of 54 boys and 49 girls aged 5.5-11 years had the relative dose-response (RDR) test performed on. Possible ocular alterations related to vitamin A and the status of anemia, serum zinc, some acute-phase proteins, and anthropometric situation were determinate by an analytic design. Results: No child presented xerophthalmia. Serum retinol values lower than 1.05 and 0.7 mu moll(-1), respectively were found in 26.2 and 5.8% of the children. The prevalence of hypovitaminosis detected by RDR test was 20.4%. The following variables and their relationship with VAD were evaluated: sex (P = 0.33; 95% confidence interval 0.61-4.34), weight and height (P >= 0.5), hemoglobin (P = 0.15), C-reactive protein (P = 0.56; 95% confidence interval 0.75-18.26), alpha-1-acid-glycoprotein (P = 0.56; 95% confidence interval 0.15-15.42) and serum zinc (P = 0.31). None of these variables was related to VAD. Conclusions: In this population, the prevalence of VAD detected could be considered a public health problem. School-aged children can be considered at risk for VAD mainly of a subclinical level, even without some associated risk factors.
Resumo:
Corticosteroid-binding globulin is a 383-amino acid glycoprotein that serves a hormone transport role and may have functions related to the stress response and inflammation. We describe a 39-member Italian-Australian family with a novel complete loss of function (null) mutation of the corticosteroid-binding globulin gene. A second, previously described, mutation (Lyon) segregated independently in the same kindred. The novel exon 2 mutation led to a premature termination codon corresponding to residue -12 of the procorticosteroid-binding globulin molecule (c.121G->A). Among 32 family members there were 3 null homozygotes, 19 null heterozygotes, 2 compound heterozygotes, 3 Lyon heterozygotes, and 5 individuals without corticosteroid-binding globulin mutations. Plasma immunoreactive corticosteroid-binding globulin was undetectable in null homozygotes, and mean corticosteroid-binding globulin levels were reduced by approximately 50% at 18.7 ± 1.3 µg/ml (reference range, 30–52 µg/ml) in null heterozygotes. Morning total plasma cortisol levels were less than 1.8 µg/dl in homozygotes and were positively correlated to the plasma corticosteroid-binding globulin level in heterozygotes. Homozygotes and heterozygote null mutation subjects had a high prevalence of hypotension and fatigue. Among 19 adults with the null mutation, the systolic blood pressure z-score was 12.1 ± 3.5; 11 of 19 subjects (54%) had a systolic blood pressure below the third percentile. The mean diastolic blood pressure z-score was 18.1 ± 3.4; 8 of 19 subjects (42%) had a diastolic blood pressure z-score below 10. Idiopathic chronic fatigue was present in 12 of 14 adult null heterozygote subjects (86%) and in 2 of 3 null homozygotes. Five cases met the Centers for Disease Control criteria for chronic fatigue syndrome. Fatigue questionnaires revealed scores of 25.1 ± 2.5 in 18 adults with the mutation vs. 4.2 ± 1.5 in 23 healthy controls (P < 0.0001). Compound heterozygosity for both mutations resulted in plasma cortisol levels comparable to those in null homozygotes. Abnormal corticosteroid-binding globulin concentrations or binding affinity may lead to the misdiagnosis of isolated ACTH deficiency. The mechanism of the association between fatigue and relative hypotension is not established by these studies. As idiopathic fatigue disorders are associated with relatively low plasma cortisol, abnormalities of corticosteroid-binding globulin may be pathogenic.
Resumo:
A 48-year-old male patient with underlying CPT II enzyme deficiency is described. Emotional stress appeared to precipitate recurrent myalgias, rhabdomyolysis and reversible renal impairment over a 40-year period. Our search of the English literature indicates this to be the first time that the emotional stress has been documented to precipitate the CPT II syndrome. Although the pathogenesis of this syndrome has yet to be established, existing knowledge is briefly reviewed and the likely metabolic and neuroendocrine mechanisms which link emotional stress to muscle metabolism are examined. These mechanisms influence the extent of lipolysis or glycolysis that occurs during the process of muscle ATP generation. It is suggested that neuroendocrine and other stress related changes which favour lipolysis over glycolysis adversely effect muscle energy metabolism in patients whose mitochondria are deficient in CPT II enzyme. Possible treatment strategies are those that favour glycolysis over fatty acid metabolism and include a variety of ways of modulating sympathetic and parasympathetic tone. The use of carbohydrate supplementation P-blockers and anxiolytic agents is discussed.
Resumo:
Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P
Resumo:
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I(-/-) and ST6Gal.I(-/-) mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I(-/-) and ST6Gal.I(-/-) strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading.
Resumo:
Acquired factor X deficiency is an extremely rare situation. It has shown to be associated with systemic amyloidosis, respiratory mycoplasma infection, factor X inhibitors, antiphospholipid antibodies, vitamin K defi ciency/liver disease as well as the use of certain medications (meropenem, valproic acid). The pathogenesis and transient nature of this deficit remain poorly understood. The authors describe the case of a teenager hospitalised for extensive burns that developed active bleeding after removal of central venous catheter. He was diagnosed with transient factor X deficiency. Normalisation of coagulation status and factor X levels occurred spontaneously 10 days after the bleeding episode.
Resumo:
TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell- specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n=39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n=41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P< .001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P< .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD(-)CD27(+) B cells (P= .019), benign lymphoproliferation (P< .001), and autoimmune complications (P= .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.
Resumo:
Streptococcus gordonii alpha-phosphoglucomutase, which converts glucose 6-phosphate to glucose 1-phosphate, is encoded by pgm. The pgm transcript is monocistronic and is initiated from a sigma(A)-like promoter. Mutants with a gene disruption in pgm exhibited an altered cell wall muropeptide pattern and a lower teichoic acid content, and had reduced fitness both in vitro and in vivo. In vitro, the reduced fitness included reduced growth, reduced viability in the stationary phase and increased autolytic activity. In vivo, the pgm-deficient strain had a lower virulence in a rat model of experimental endocarditis.
Resumo:
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.