987 resultados para acid hydrolysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spent coffee grounds (SCG) the residual materials obtained during the processing of raw coffee powder to prepare instant coffee are the main coffee Industry residues In the present work this material was chemically characterized and subsequently submitted to a dilute acid hydrolysis aiming to recover the hemicellulose sugars Reactions were performed according to experimental designs to verify the effects of the variables H(2)SO(4) concentration liquid-to-solid ratio temperature and reaction time on the efficiency of hydrolysis SCG was found to be rich in sugars (45 3% w/w) among of which hemicellulose (constituted by mannose galactose and arabinose) and cellulose (glucose homopolymer) correspond to 367% (w/w) and 8 6% (w/w) respectively Optimal conditions for hemicellulose sugars extraction consisted in using 100 mg acid/g dry matter 10g liquid/g solid at 163 degrees C for 45 min Under these conditions hydrolysis efficiencies of 100% 774% and 895% may be achieved for galactan mannan and arabinan respectively corresponding to a hemicellulose hydrolysis efficiency of 874% (C) 2010 Elsevier Ltd All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The excess of sugarcane bagasse (SCB) from the sugar-alcohol industry is considered a by-product with great potential for many bioproducts production. This work had as objective to verify the performance of sugarcane bagasse hemicellulosic hydrolysate (SCBHH) as source of sugars for enzymatic or in vitro xylitol production. For this purpose, xylitol enzymatic production was evaluated using different concentrations of treated SCBHH in the commercial reaction media. The weak acid hydrolysis of SCB provided a hydrolysate with 18 g L(-1) and 6 g L(-1) of xylose and glucose, respectively. Considering the reactions, changes at xylose xylitol conversion efficiency and volumetric productivity in xylitol were not observed for the control experiment and using 20 and 40% v.v (1) of SCBHH in the reaction media. The conversion efficiency achieved 100% in all the experiments tested. The results showed that treated SCBHH is suitable as xylose and glucose source for the enzymatic xylitol production and that this process has potential as an alternative for traditional xylitol production ways. (C) 2011 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of a recently isolated Scheffersomyces stipitis strain (UFMG-IMH 43.2) to produce ethanol from xylose was evaluated. For the assays, a hemicellulosic hydrolysate produced by dilute acid hydrolysis of sugarcane bagasse was used as the fermentation medium. Initially, the necessity of adding nutrients (MgSO(4).7H(2)O, yeast extract and/or urea) to this medium was verified, and the yeast extract supplementation favoured ethanol production by the yeast. Then, in a second stage, assays under different initial xylose and cell concentrations, supplemented or not with yeast extract, were performed. All these three variables showed significant (p < 0.05) influence on ethanol production. The best results (ethanol yield and productivity of 0.19 g/g and 0.13 g/l/h, respectively) were obtained using the hydrolysate containing an initial xylose concentration of 30 g/l, supplemented with 5.0 g/l yeast extract and inoculated with an initial cell concentration of 2.0 g/l. S. stipitis UFMG-IMH 43.2 was demonstrated to be a yeast strain with potential for use in xylose conversion to ethanol. The establishment of the best fermentation conditions was also proved to be of great importance to increasing the product formation by this yeast strain. These findings open up new perspectives for the establishment of a feasible technology for ethanol production from hemicellulosic hydrolysates. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration ((V) under bar (flask)/V(medium) ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y(P/S); cell yield factor, Y(X/S); and ethanol volumetric productivity, Q(P)) was investigated through a 2(2) full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y(P/S) = 0.37 g/g and Q(P) = 0.39 g/l. h) were found when the lowest aeration (2.5 V(flask)/V(medium) ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple protocol for the Pd(OAc)(2)-catalyzed cross-coupling reaction of 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones with potassium aryltrifluoroborates was developed. The reaction is performed at 110 degrees C with a ligand-free catalyst. In all cases, complete conversion of the 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones and aryltrifluoroborates into the C-C coupling products was observed within 30-360 min. It is noteworthy that a large variety of groups present in the potassium aryltrifluoroborates (-CF(3), -OMe, -SEt, -CN, -CHO, -Cl, -Cbz, -NCbz, -OH, -CO(2)H) could be tolerated. Hydrogenation of the endocyclic double bonds in the Suzuki-Miyaura products followed by acid hydrolysis afforded highly enantioenriched alpha-aryl-substituted beta-amino acids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A search for new antiparasitic agents from a strain of the fungus Aspergillus carneus isolated from an estuarine sediment collected in Tasmania, Australia, yielded the known terrestrial fungal metabolite marcfortine A ( 1) as an exceptionally potent antiparasitic agent. This study also yielded a series of new depsipeptides, aspergillicins A - E ( 2 - 6) and the known terrestrial fungal metabolite acyl aszonalenin ( 7). Marcfortine A ( 1) and acyl aszonalenin ( 7) were identified by spectroscopic analysis, with comparison to literature data. Complete stereostructures were assigned to aspergillicins A - E ( 2 - 6) on the basis of detailed spectroscopic analysis, together with ESIMS analysis of the free amino acids generated by acid hydrolysis, and HPLC analysis of Marfey derivatives prepared from the acid hydrolysate. The peptide amino acid sequence for all aspergillicins was unambiguously assigned by MSn ion-trap ESI mass spectrometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Banana fruits are important foods, but there have been very few studies evaluating the phenolics associated with their cell walls. In the present study, (+) catechin, gallocatechin, and (-) epicatechin, as well as condensed tannins, were detected in the soluble extract of the fruit pulp; neither soluble anthocyanidins nor anthocyanins were present. In the soluble cell wall fraction, two hydroxycinnamic acid derivatives were predominant, whereas in the insoluble cell wall fraction, the anthocyanidin delphinidin, which is reported in banana cell walls for the first time, was predominant. Cell wall fractions showed remarkable antioxidant capacity, especially after acid and enzymatic hydrolysis, which was correlated with the total phenolic content released after the hydrolysis of the water-insoluble polymer, but not for the posthydrolysis water-soluble polymer. The acid hydrolysis released various monosaccharides, whereas enzymatic hydrolysis released one peak of oligosaccharides. These results indicate that banana cell walls could be a suitable source of natural antioxidants and that they could be bioaccessible in the human gut.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports the first ultrastructural investigation into the degradation process that starch granules isolated from bananas (cv. Nanicao) undergo during ripening. Starch granules from green bananas had a smooth surface, while granules from ripe bananas were more elongated with parallel striations, as revealed by CSLM and SEM. AFM images revealed that the first layer covering the granule surface is composed of a hard material and, as degradation proceeds, hard and soft regions seem to be repeated at regular intervals. WAXD patterns of banana starches were C-type, and the crystalline index was reduced during ripening. The B-/A-type ratio was increased, indicating the preferential degradation of the A-type allomorph. The branch-chain length distribution showed predominantly short chains of amylopectin (A and B1-chain). The fa/fb ratio was reduced during degradation, while amylose content was increased. The results allowed a detailed understanding of the changes that starch granules undergo during banana ripening. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Amazonian manatee (Trichechus inunguis) is endemic in the Amazonian basin and is the only exclusively fresh water sirenian. Historically hunted on a large scale, this species is now considered endangered, and Studies on the reproductive physiology are critical for the improvement of reproductive management of captive and wild Populations of manatees. The aim of this Study was to verify the viability of androgen measurement in saliva, lacrimal, urine, and fecal samples of the Amazonian manatee by conducting a hormone challenge. Two adult male manatees (A-1 and A-2) were Submitted to an experimentation protocol of 12 day (D1 to D10). On D0, the animals received an intramuscular injection of gonadotropin-releasing hormone (GnRH)-analogue. Salivary, lacrimal, urinary, and fecal samples were collected daily (between 0800 hours and 0900 hours) and frozen at -20 degrees C until assayed. Fecal samples were lyophilized, extracted with 80% methanol, and diluted in buffer before the radioimmunoassay (RIA). Urine samples underwent acid hydrolysis and were diluted in depleted bovine serum. Salivary and lacrimal samples were assayed without the extraction step. Hormonal assays were conducted with a commercial testosterone RIA kit. An androgen peak (>median + 2 interquartile range [IQR]) was observed in all matrices of both animals, although it was less prominent in the lacrimal samples of A-2. However, the fecal androgen peak (A-1 peak = 293.78 ng/g dry feces, median [IQR] = 143.58 [32.38] ng/g dry feces; A-2 peak = 686.72 ng/g dry feces, median [IQR] = 243.82 [193.16] ng/g dry feces) occurred later than urinary (A-1 peak = 648.16 ng/mg creatinine [Cr], median [IQR] = 23.88 [30.44] ng/mg Cr; A-2 peak = 370.44 ng/mg Cr, median [IQR] = 113.87 [117.73] ng/mg Cr) and salivary (A-1 peak = 678.89 pg/ml, median [IQR] = 103.69 [119.86] pg/ml; A-2 peak = 733.71 pg/ml, median [IQR] = 262.92 [211.44] pg/ml) androgen peaks. These intervals appear to be correlated with the long digesta passage time in this species. The salivary and urinary peaks were closely associated. These results demonstrate that androgen concentrations in saliva, urine, or feces samples reflect reliably physiologic events and are a powerful tool for noninvasive reproductive monitoring of Amazonian manatees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted Glycosyl Phosphatidyl Inositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have produced a number of monoclonal antibodies, protective and non-protective, which recognize a complex of schistosomula antigens, including the 38 kDa antigen. Eight different protective and non-protective monoclonal antibodies, varying in isotypes, were used in the binding assays. Lectin inhibition studies suggested that the monoclonal antibodies probably recognized carbohydrate epitopes on the antigen(s). Immunoprecipitation studies showed that at least two of the monoclonal antibodies recognized different epitopes on the same molecule. Additionally, we tested for monoclonal antibody binding after the antigens were treated with; 1) proteases, 2) periodate, 3) various exo- and endoglycosidases, 4) mild acid hydrolysis. We also tested for binding of the antibodies to keyhole limpet hemocyanin (KLH). Using the 8 monoclonal antibodies as probes, we were able to define at least 4 different carbohydrate epitopes related to the protective monoclonal antibodies, and at least one epitope which is seen by the non-protective antibodies. The epitope seen by the non-protective antibodies was shown to be cross-reactive with epitopes on KLH. These results demonstrate the importance of epitope mapping studies for any defined vaccine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study evaluated the anti-inflammatory and analgesic properties of Agave sisalana Perrine in classic models of inflammation and pain. The hexanic fraction of A. sisalana (HFAS) was obtained by acid hydrolysis followed by hexanic reflux. Anti-inflammatory properties were examined in three acute mouse models (xylene ear oedema, hind paw oedema and pleurisy) and a chronic mouse model (granuloma cotton pellet). The antinociceptive potential was evaluated in chemical (acetic-acid) and thermal (tail-flick and hot-plate test) models of pain. When given orally, HFAS (5, 10, 25 and 50 mg/kg) reduced ear oedema (p < 0.0001; 52%, 71%, 62% and 42%, respectively). HFAS also reduced hind paw oedema at doses of 10 mg/kg and 25 mg/kg (p < 0.05; 42% and 58%, respectively) and pleurisy at doses of 10 mg/kg and 25 mg/kg (41% and 50%, respectively). In a chronic model, HFAS reduced inflammation by 46% and 58% at doses of 10 mg/kg and 25 mg/kg, respectively. Moreover, this fraction showed analgesic properties against the abdominal writhing in an acetic acid model (at doses of 5-25 mg/kg) with inhibitory rates of 24%, 54% and 48%. The HFAS also showed an increased latency time in the hot-plate (23% and 28%) and tail-flick tests (61% and 66%) for the 25 mg/kg and 50 mg/kg doses, respectively. These results suggest that HFAS has anti-inflammatory and analgesic properties.