942 resultados para absorption curves
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of sample preparation strategy of vegetables on the electrothermal behaviour of Se without and with chemical modifiers such as Pd(NO3)(2), Pd(NO3)(2) + Mg(NO3)(2), Pd(NO3)(2) + Cd(NO3)(2), pre-reduced Pd, Mg(NO3)(2), and Ni(NO3)(2) was investigated. Acid digestates and slurries of vegetables (0.1% m/v in 1% m/v HNO3 + 0.005% v/v of Triton X-100) were used to prepare reference solutions or slurries. For 10 mul of each modifier tested, pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. Best conditions, such as thermal stability, signal profile, repeatability and sensitivity were attained using Pd(NO3)(2) as chemical modifier. The following heating program (temperature, ramp/hold time) of the graphite tube of the Varian SpectrAA-800Z atomic absorption spectrometer was used: dry step (85 degreesC, 5/0 s; 95 degreesC, 40/0 s; 120 degreesC, 10/.5 s); pyrolysis step (1400 degreesC, 10/3s); atomization step (2200 degreesC, 1/2 s); clean step (2600 degreesC, 2/0 s). This pyrolysis temperature is 800 degreesC higher than when measuring without any modifier. For 20 muL sample volume and 10 mug Pd(NO3)(2), analytical curves in the 3.0-30 mug Se 1(-1) range were obtained. The method was applied for Se determination in acid digestates and slurries of 10 vegetable samples and one standard reference material (rice flower) and results were in agreement at 95% confidence level. Recoveries varied from 89 to 95% for spiked samples. The lifetime of the graphite tube was ca. 250 firings and the relative standard deviations (n = 12) for a typical acid digestate and slurry containing 20 mug Se 1(-1) were 3.8% and 8.3%, respectively. The limits of detection were 2.0 mug Se 1(-1) and 0.6 mug Se 1(-1) Se for digestates and slurries, respectively. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l(-1) HNO3 and in 1 + 1 v/v diluted wine using mixtures of Pd(NO3)(2) + Mg(NO3)(2) and NH4H2PO4 + Mg(NO3)(2) as chemical modifiers. With 5 mug Pd + 3 mug Mg as the modifiers and a two-step pyrolysis (10 s at 400 degreesC and 10 s at 600 degreesC), the formation of carbonaceous residues inside the atomizer was avoided. For 20 mul of sample (wine + 0.056 mol l(-1) HNO3, 1 + 1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 mug l(-1) Cd and 5.0-50 mug l(-1) Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 mug l(-1) for Cd, 0.8 mug l(-1) for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 mug l(-1) and for Pb at 500 mug l(-1). The relative standard deviations (n = 12) were typically < 8% for Cd and < 6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Ph was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A method has been developed for the direct determination of Se in nutritionally relevant foods by graphite furnace atomic absorption spectrometry. Tungsten/rhodium carbide coating on the integrated platform of a transversely heated graphite atomizer or W coating with co-injection of Pd(NO3)(2) were used as a permanent modifiers. Samples and reference solutions were spiked with 500 mu g L-1 As and absorbance variations due to changes in experimental conditions were minimized. For 20 mu L aqueous analytical solutions delivered into the graphite tube, analytical curves in the 5.0-40 mu g L-1 with good linear correlation were established. Pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. The optimized heating program (temperature, ramp time, hold time) of the graphite tube of the Perkin-Elmer SIMAA 6000 atomic absorption spectrometer was: dry steps (110 degrees C, 5 s, 10 s; 130 degrees C, 15 s, 15 s); air-assisted pyrolysis step (600 degrees C, 20 s, 40 s; 20 degrees C, 1 s, 40 s); pyrolysis step (1300 degrees C, 10 s, 20 s); atomization step (2100 degrees C, 0 s, 4 s); clean step (2550 degrees C, 1 s, 5 s). The method was applied for Se determination in coconut water, coconut milk, soybean milk, cow milk, tomato juice, mango juice, grape juice and drinking water samples and four standard reference materials and results were in agreement at 95% confidence level. The lifetime of the tube was 500 firings and the relative standard deviations of measurements of typical samples containing 25 mu gL(-1) Se were 3.0% and 6.0% (n = 12) with and without internal standardization, respectively. The limits of detection were in the 0.35 mu g L-1-0.7 mu g Se L-1 range. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 98-109% range. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Arsenic and germanium have been evaluated as internal standards to minimize matrix effects on the direct determination of selenium in milk by graphite furnace atomic absorption spectrometry (GFAAS) using tubes with integrated platform, pre-treated with W together with I'd as chemical modifier. The efficiency of As and Ge as internal standards for 25 mu g L-1 Se plus 500 mu g (L)-1 As or Ge in diluted (1 + 9 v/v) milk plus 1.0% (v/v) HNO3 was evaluated by means of correlation graphs plotted from the normalized absorbance signals (n = 20) of internal standard (axis gamma) versus analyte (axis x). The equations that describe the linear regression were: A(As)= - 0.004 +/- 0.019 +/- 1.02 + 0.019 A(Se) (r=0.9967 +/- 0.005); A(Ge)= - 0.0 17 +/- 0.015 + 1.01 +/- 0.015 A(Se) (r = 0.9978 +/- 0.004). Samples and reference solutions were automatically spiked with 500 mu g L-1 Ge or As and 1.0% (v/v) HNO3 by the autosampler. For 20 mu L of aqueous standard solutions, analytical curves in the 5.00-40.0 mu g L-1 Se range were established using the ratio of Se absorbance to internal standard absorbance (A(Se)A(IS)) versus analyte concentration, and good linear correlations were obtained. The characteristic mass was 40 pg Se. Limits of detection were 0.55 and 0.40 mu g L-1 with As and Ge as the internal standard, respectively. Relative standard deviations (RSD) for a sample containing 25 mu g L-1 Se were 1.2% and 1.0% (n = 12) using As and Ge, respectively. The RSD without internal standardization was about 6%. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 99-105% range with IS and in the 70-80% range without IS. Using Ge as the internal standard, results of analysis of standard reference materials were in agreement with certified values at a 95% confidence level. The selenium concentration for 10 analyzed milk samples varied from 5.0 to 20 mu g L-1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different kinds of modifiers and coatings on the integrated platform of transversely heated graphite atomizer (THGA) have been tested for the simultaneous determination of two group of elements: the first, the more volatile, formed by arsenic, bismuth, lead, antimony and selenium; the second, the less volatile, formed by cobalt, chromium, cupper, iron and manganese in milk by electrothermal atomic absorption spectrometry. Different Rh-modifiers were studied, such as Rh-coated platforms (Rh), carbide plus rhodium coated platforms (W-Rh, Zr-Rh), carbide-coated platforms (W and Zr) with co-injection of RhCl3, solutions and uncoated platforms with injection of solutions of Pd(NO3)(2), Mg(NO3)(2), and RhCl3. Milk samples were diluted 1:10 in 1.0% HNO3 and injected into the tube. The mass of modifier deposited and co-injected in the tube and the use of end capped tubes were also evaluated in order to improve the electrothermal behavior of analytes. Integrated platform pretreated with W plus co-injection RhCl3 for first group and pretreated with W-Rh for second group were elected. For 20 mu L injected samples the analytical curves in the 5.0-20.0 mu g L-1 concentration range have good linear correlation coefficients (r > 0.998). Relative standard deviations (n = 12) are < 6% and the calculated characteristic masses are between 5 pg and 62 pg.
Resumo:
The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.
Resumo:
Propolis is a natural product collected by honeybees and has a large range of pharmacological activity, including antimicrobial, antitumoral, antioxidant and anti-inflammatory. Its use as a popular medicine is increasing all over the world, creating a need for quality control of the commercial products. In this study the levels of calcium and magnesium in commercial hydroalcoholic propolis extracts from varies states of Brazil were determined by atomic absorption flame spectrophotometry and different values were obtained for northern and southern states. This study can be extended to the analysis of metals that are harmful to health. The results showed that the calibration curves were linear over a wide concentration range (0.5-4.0 μg.mL -1 for calcium and 0.05-0.4 μg.mL -1 for magnesium) with good correlation coefficients (0.999 and 0.988, respectively). Good analytical recovery (94%) was obtained. The proposed method showed adequate precision and relative standard deviation lower than 2 %. The method is accurate and precise as well as having advantages such as simplicity and speed.
Resumo:
The wavelength-integrated absorbance (WIA) and summation of absorbance (∑ lines) of different lines were evaluated to enhance sensitivity and determine B, P and S in medicinal plants by HR-CS FAAS. The lowest LOD for B (0.5mgL-1) and P (13.7mgL-1) was obtained by integration of lines 249.773nm (3pixels) and 247.620nm (5pixels), respectively. The ∑ lines for CS at 257.595nm and 257.958nm furnished LOD=30.5mgL-1, ca. 10% lower than the LOD obtained for the WIA using 257.595nm and 5pixels. Data showed the advantage of WIA over ∑ lines to improve sensitivity for all analytes. Under optimized conditions, calibration curves in the 1.0-100mgL-1 B and 50.0-2000mgL-1 P, S ranges were consistently obtained. Results obtained with the HR-CS FAAS method were in agreement at 98% and 95% confidence level with certified values for B and P, respectively. And results for S were in accordance to non-certified values. Concentrations of B, P, and S in 12 medicinal plants analyzed by the proposed method varied within the 19.4-34.5mgkg-1 B, 719-3910mgkg-1 P and 1469-7653mgkg-1 S ranges. © 2012 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method has been developed for the direct determination of Cu, Cd, Ni and Pb in aquatic humic substances (AHS) by graphite furnace atomic absorption spectrometry. AHS were isolated from water samples rich in organic matter, collected in the Brazilian Ecological Parks. All analytical curves presented good linear correlation coefficient. The limits of detection and quantification were in the ranges 2.5-16.7 mu g g(-1) and 8.5-50.0 mu g g(-1), respectively. The accuracy was determined using recovery tests, and for all analytes recovery percentages ranged from 93 - 98 %, with a relative standard deviation less than 4 %. The results indicated that the proposed method is a suitable alternative for the direct determination of metals in AHS.