171 resultados para absorbent tuple
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
Literally, the word compliance suggests conformity in fulfilling official requirements. The thesis presents the results of the analysis and design of a class of protocols called compliant cryptologic protocols (CCP). The thesis presents a notion for compliance in cryptosystems that is conducive as a cryptologic goal. CCP are employed in security systems used by at least two mutually mistrusting sets of entities. The individuals in the sets of entities only trust the design of the security system and any trusted third party the security system may include. Such a security system can be thought of as a broker between the mistrusting sets of entities. In order to provide confidence in operation for the mistrusting sets of entities, CCP must provide compliance verification mechanisms. These mechanisms are employed either by all the entities or a set of authorised entities in the system to verify the compliance of the behaviour of various participating entities with the rules of the system. It is often stated that confidentiality, integrity and authentication are the primary interests of cryptology. It is evident from the literature that authentication mechanisms employ confidentiality and integrity services to achieve their goal. Therefore, the fundamental services that any cryptographic algorithm may provide are confidentiality and integrity only. Since controlling the behaviour of the entities is not a feasible cryptologic goal,the verification of the confidentiality of any data is a futile cryptologic exercise. For example, there exists no cryptologic mechanism that would prevent an entity from willingly or unwillingly exposing its private key corresponding to a certified public key. The confidentiality of the data can only be assumed. Therefore, any verification in cryptologic protocols must take the form of integrity verification mechanisms. Thus, compliance verification must take the form of integrity verification in cryptologic protocols. A definition of compliance that is conducive as a cryptologic goal is presented as a guarantee on the confidentiality and integrity services. The definitions are employed to provide a classification mechanism for various message formats in a cryptologic protocol. The classification assists in the characterisation of protocols, which assists in providing a focus for the goals of the research. The resulting concrete goal of the research is the study of those protocols that employ message formats to provide restricted confidentiality and universal integrity services to selected data. The thesis proposes an informal technique to understand, analyse and synthesise the integrity goals of a protocol system. The thesis contains a study of key recovery,electronic cash, peer-review, electronic auction, and electronic voting protocols. All these protocols contain message format that provide restricted confidentiality and universal integrity services to selected data. The study of key recovery systems aims to achieve robust key recovery relying only on the certification procedure and without the need for tamper-resistant system modules. The result of this study is a new technique for the design of key recovery systems called hybrid key escrow. The thesis identifies a class of compliant cryptologic protocols called secure selection protocols (SSP). The uniqueness of this class of protocols is the similarity in the goals of the member protocols, namely peer-review, electronic auction and electronic voting. The problem statement describing the goals of these protocols contain a tuple,(I, D), where I usually refers to an identity of a participant and D usually refers to the data selected by the participant. SSP are interested in providing confidentiality service to the tuple for hiding the relationship between I and D, and integrity service to the tuple after its formation to prevent the modification of the tuple. The thesis provides a schema to solve the instances of SSP by employing the electronic cash technology. The thesis makes a distinction between electronic cash technology and electronic payment technology. It will treat electronic cash technology to be a certification mechanism that allows the participants to obtain a certificate on their public key, without revealing the certificate or the public key to the certifier. The thesis abstracts the certificate and the public key as the data structure called anonymous token. It proposes design schemes for the peer-review, e-auction and e-voting protocols by employing the schema with the anonymous token abstraction. The thesis concludes by providing a variety of problem statements for future research that would further enrich the literature.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
The symbolic and improvisational nature of Livecoding requires a shared networking framework to be flexible and extensible, while at the same time providing support for synchronisation, persistence and redundancy. Above all the framework should be robust and available across a range of platforms. This paper proposes tuple space as a suitable framework for network communication in ensemble livecoding contexts. The role of tuple space as a concurrency framework and the associated timing aspects of the tuple space model are explored through Spaces, an implementation of tuple space for the Impromptu environment.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.
Resumo:
Goethite, one of the most thermodynamically stable iron oxides, has been extensively researched especially the structure (including surface structure), the adsorption capacity to anions, organic/organic acid (especially for the soil organic carbon) and cations in the natural environment and its potential application in environmental protection. For example, the adsorption of heavy metals by goethite can decrease the concentration of heavy metals in aqueous solution and immobilize; the adsorption to soil organic carbon can decrease the release of carbon and fix carbon. In this present overview, the possible physicochemical properties of the goethite surface contributing to the strong affinity of goethite to nutrients and contaminants in natural environment are reported. Moreover, these chemicals adsorbed by goethite were also summarized and the suggested adsorption mechanism for these adsorbates was elucidated, which will help us understand the role of goethite in natural environment and provide some information about goethite as an absorbent. In addition, the feasibility of goethite used as catalyst carrier and the precursor of NZVI was proposed for removal of environmental pollution.
Resumo:
The purpose of this cross-sectional study was to identify the prevalence of incontinence and incontinence-associated dermatitis (IAD) in Australian acute care patients and to describe the products worn to manage incontinence, and those provided at the bedside for perineal skin care. Data on 376 inpatients were collected over 2 days at a major Australian teaching hospital. The mean age of the sample group was 62 years and 52% of the patients were male. The prevalence rate of incontinence was 24% (91/376). Urinary incontinence was significantly more prevalent in females (10%) than males (6%) (χ2 = 4·458, df = 1, P = 0·035). IAD occurred in 10% (38/376) of the sample group, with 42% (38/91) of incontinent patients having IAD. Semi-formed and liquid stool were associated with IAD (χ2 = 5·520, df = 1, P = 0·027). Clinical indication of fungal infection was present in 32% (12/38) of patients with IAD. Absorbent disposable briefs were the most common incontinence aids used (80%, 70/91), with soap/water and disposable washcloths being the clean-up products most commonly available (60%, 55/91) at the bedside. Further data are needed to validate this high prevalence. Studies that address prevention of IAD and the effectiveness of management strategies are also needed.
Resumo:
High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have implemented a Firewall with this architecture in reconflgurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results in both speed and area improvement when it is implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields. High throughput classification invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly in terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for the worst case packet size. The Firewall rule update involves only memory re-initialization in software without any hardware change.
Resumo:
High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have Implemented a Firewall with this architecture in reconfigurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using, our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results In both speed and area Improvement when It is Implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields.High throughput classification Invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly In terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware Implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for file worst case packet size. The Firewall rule update Involves only memory re-initialiization in software without any hardware change.
Resumo:
Onboard spacecraft computing system is a case of a functionally distributed system that requires continuous interaction among the nodes to control the operations at different nodes. A simple and reliable protocol is desired for such an application. This paper discusses a formal approach to specify the computing system with respect to some important issues encountered in the design and development of a protocol for the onboard distributed system. The issues considered in this paper are concurrency, exclusiveness and sequencing relationships among the various processes at different nodes. A 6-tuple model is developed for the precise specification of the system. The model also enables us to check the consistency of specification and deadlock caused due to improper specification. An example is given to illustrate the use of the proposed methodology for a typical spacecraft configuration. Although the theory is motivated by a specific application the same may be applied to other distributed computing system such as those encountered in process control industries, power plant control and other similar environments.
Resumo:
This work reports on the fabrication of a superhydrophobic nylon textile based on the organic charge transfer complex CuTCNAQ (TCNAQ = 11,11,12,12-tetracyanoanthraquinodimethane). The nylon fabric that is metallized with copper undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro and nanoscale roughness that is required for the Cassie-Baxter state thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterised with SEM, FT-IR and XPS spectroscopy and investigated for its ability to separate oil and water in two modes, namely under gravity and as an absorbent. It is found that the fabric can separate dichloromethane, olive oil and crude oil from water and in fact reduce the water content of the oil during the separation process. The fabric is reusable and tolerant to conditions such as seawater, hydrochloric acid and extensive time periods on the shelf. Given that CuTCNAQ is a copper based semiconductor may also open up the possibility of other applications in areas such as photocatalysis and antibacterial applications.
Resumo:
The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts.
Resumo:
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S) (z, w) = (1 - z (w) over tilde)(-1) for |z|, |w| < 1, by means of (1/k(S))(T,T*) >= 0, we consider an arbitrary open connected domain Omega in C-n, a complete Pick kernel k on Omega and a tuple T = (T-1, ..., T-n) of commuting bounded operators on a complex separable Hilbert space H such that (1/k)(T,T*) >= 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with T. Moreover, the characteristic function is then a complete unitary invariant for a suitable class of tuples T.