47 resultados para Zymosan, Polissacarídieos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-a and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The herb Echinacea purpurea, also called purple coneflower, is regarded as an immune modulator. This study examined changes in cytokine production in blood samples from 30 volunteers before and during 8-day oral administration with an ethanolic extract of fresh Echinacea purpurea (Echinaforce(®)). Daily blood samples were ex vivo stimulated by LPS/SEB or Zymosan and analysed for a series of cytokines and haematological and metabolic parameters. Treatment reduced the proinflammatory mediators TNF-α and IL-1β by up to 24% (p<0.05) and increased anti-inflammatory IL-10 levels by 13% (p<0.05) in comparison to baseline. This demonstrated a substantial overall anti-inflammatory effect of Echinaforce(®) for the whole group (n=28). Chemokines MCP-1 and IL-8 were upregulated by 15% in samples from subjects treated with Echinaforce(®) (p<0.05). An analysis of a subgroup of volunteers who showed low pre-treatment levels of the cytokines MCP-1, IL-8, IL-10 or IFN-γ (n=8) showed significant stimulation of these factors upon Echinaforce(®) treatment (30-49% increases; p<0.05), whereas the levels in subjects with higher pre-treatment levels remained unaffected. We chose the term "adapted immune-modulation" to describe this observation. Volunteers who reported high stress levels (n=7) and more than 2 colds per year experienced a significant transient increase in IFN-γ upon Echinaforce(®) treatment (>50%). Subjects with low cortisol levels (n=11) showed significant down-regulation of the acute-phase proteins IL1-β, IL-6, IL-12 and TNF-α by Echinaforce(®) (range, 13-25%), while subjects with higher cortisol levels showed no such down-regulation. This is the first ex vivo study to demonstrate adapted immune-modulation by an Echinacea preparation. While Echinaforce(®) did not affect leukocyte counts, we speculate that the underlying therapeutic mechanism is based on differential multi-level modulation of the responses of the different types of leukocytes. Echinaforce(®) thus regulates the production of chemokines and cytokines according to current immune status, such as responsiveness to exogenous stimuli, susceptibility to viral infection and exposure to stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate γ-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-mediated phagocytosis and expression of cell surface molecules associated with innate and adaptive immunity on sputum-derived macrophages. Cells from nonsmoking healthy (n = 6) and mild house dust mite-sensitive allergic asthmatics (n = 6) were treated ex vivo with GT (300 µM) or saline (control). Phagocytosis of opsonized zymosan A bioparticles (Saccharomyces cerevisiae) and expression of surface molecules associated with innate and adaptive immunity were assessed using flow cytometry. GT caused significantly decreased (p < 0.05) internalization of attached zymosan bioparticles and decreased (p < 0.05) macrophage expression of CD206, CD36 and CD86 in allergic asthmatics but not in controls. Overall, GT caused downregulation of both innate and adaptive immune response elements, and atopic status appears to be an important factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-8 (IL-8), a proinflammatory cytokine produced by human monocytes, fibroblasts, and endothelial and epithelial cells, is effective not only on cells and tissues of human beings but also on those of several animal species. We investigated the importance of recombinant human IL-8 for the activation of canine neutrophils in vitro and its potential for inducing inflammation in vivo. Shape change (10(-9)-10(-7) M IL-8) and chemotaxis (10(-10)-10(-6) M IL-8) assays were used to determine the activation of canine neutrophils in vitro. Chemotaxis was induced by IL-8 at doses > 10(-8) M with a maximum response at 10(-6) M. A rapid shape change of comparable intensity was elicited by 10(-9)-10(-7) M IL-8. Thirty minutes after intradermal injection of 10(-9) moles of IL-8, emigration of neutrophils could be observed and became more intense at 60 minutes and 240 minutes, respectively. Zymosan-activated canine plasma, which served as a positive control, induced a rapid, massive, and more diffuse neutrophil accumulation, whereas the reaction after IL-8 was weaker but still significant. The neutrophil accumulation after IL-8 was preferentially located in perivenular areas of the deep dermis. Recombinant human IL-8 is capable of activating canine neutrophils in vitro and is able to generate significant neutrophil accumulation in dog skin. Its activity is lower than that in human, rabbit, and rat systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione oxidants such as tertiary butyl hydroperoxide were shown previously to prevent microtubule assembly and cause breakdown of preassembled cytoplasmic microtubules in human polymorphonuclear leukocytes. The objectives of the present study were to determine the temporal relationship between the attachment and ingestion of phagocytic particles and the assembly of microtubules, and simultaneously to quantify the levels of reduced glutathione and products of its oxidation as potential physiological regulators of assembly. Polymorphonuclear leukocytes from human peripheral blood were induced to phagocytize opsonized zymosan at 30 degrees C. Microtubule assembly was assessed in the electron microscope by direct counts of microtubules in thin sections through centrioles. Acid extracts were assayed for reduced glutathione (GSH) and oxidized glutathione (GSSG), by the sensitive enzymatic procedure of Tietze. Washed protein pellets were assayed for free sulfhydryl groups and for mixed protein disulfides with glutathione (protein-SSG) after borohydride splitting of the disulfide bond. Resting cells have few assembled microtubules. Phagocytosis induces a cycle of rapid assembly followed by disassembly. Assembly is initiated by particle contact and is maximal by 3 min of phagocytosis. Disassembly after 5-9 min of phagocytosis is preceded by a slow rise in GSSG and coincides with a rapid rise in protein-SSG. Protein-SSG also increases under conditions in which butyl hydroperoxide inhibits the assembly of microtubules that normally follows binding of concanavalin A to leukocyte cell surface receptors. No evidence for direct involvement of GSH in the induction of assembly was obtained. The formation of protein-SSG, however, emerges as a possible regulatory mechanism for the inhibition of microtubule assembly and induction of their disassembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we investigated, using intravital microscopy, how neutrophil extravasation across mouse mesenteric postcapillary venules is inhibited by the glucocorticoid-regulated protein lipocortin (LC; also termed annexin) 1. Intraperitoneal injection of 1 mg of zymosan into mice induced neutrophil rolling on the activated mesenteric endothelium followed by adhesion (maximal at 2 hr: 5–6 cells per 100-μm of vessel length) and emigration (maximal at 4 hr: 8–10 cells per high-powered field). Treatment of mice with human recombinant LC1 (2 mg/kg s.c.) or its mimetic peptide Ac2–26 (13 mg/kg s.c.) did not modify cell rolling but markedly reduced (≥50%) the degree of neutrophil adhesion and emigration (P < 0.05). Intravenous treatment with peptide Ac2–26 (13 mg/kg) or recombinant human LC1 (0.7–2 mg/kg) promoted detachment of neutrophils adherent to the endothelium 2 hr after zymosan administration, with adherent cells detaching within 4.12 ± 0.75 min and 2.36 ± 0.31 min, respectively (n = 20–25 cells). Recruitment of newly adherent cells to the endothelium was unaffected. The structurally related protein LC5 was inactive in this assay, whereas a chimeric molecule constructed from the N terminus of LC1 (49 aa) attached to the core region of LC5 produced cell detachment with kinetics similar to LC1. Removal of adherent neutrophils from activated postcapillary endothelium is a novel pharmacological action, and it is at this site where LC1 and its mimetics operate to down-regulate this aspect of the host inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In all other species analyzed to date, the functionally active form of complement component C3 exists as the product of a single gene. We have now identified and characterized three functional C3 proteins (C3-1, C3-3, and C3-4) in trout that are the products of at least two distinct C3 genes. All three proteins are composed of an alpha-and a beta-chain and contain a thioester bond in the alpha-chain. However, they differ in their electrophoretic mobility, glycosylation, reactivity with monospecific C3 antibodies, and relative ability to bind to various surfaces (zymosan, Escherichia coli, erythrocytes). A comparison of the partial amino acid sequences of the three proteins showed that the amino acid sequence identity/similarity of C3-3 to C3-4 is 87/91%, while that of C3-3 and C3-4 to C3-1 is 51.5/65.5% and 60/73% respectively. Thus, trout possess multiple forms of functional C3 that represent the products of several distinct genes and differ in their ability to bind covalently to various complement activators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A melatonina é um hormônio produzido de forma rítmica e no período de escuro pela glândula pineal bem como de forma não rítmica por diversos tecidos e células imunocompetentes. É sintetizada pela acetilação e metilação da serotonina pela ação das enzimas arilalquilamina N-acetiltransferase (AA-NAT) e acetilserotonina -O-metiltransferase (ASMT) que levam à formação de N-acetilserotonina (NAS) e melatonina (MEL), respectivamente. Nos últimos anos temos demonstrado que síntese de melatonina pela pineal pode ser negativamente modulada por mediadores inflamatórios e pelo ATP que atua como co-transmissor juntamente com a noradrenalina liberada no terminal nervoso simpático que a inerva. Perifericamente, contudo, estes mediadores inflamatórios apresentam um efeito contrário induzindo a produção de melatonina em células imunocompetentes. Estas observações levaram à criação da hipótese de um eixo imune-pineal. Esse trabalho teve como objetivo verificar o efeito do ATP sobre produção de melatonina em macrófagos da linhagem RAW 264.7 Os dados desse trabalho mostram que o ATP é capaz de induzir de maneira dose dependente a produção de melatonina em macrófagos através da modulação das enzimas AA-NAT e ASMT. Foi demostrado também que esse efeito é mediado pelo receptor P2X7 e que a melatonina produzida age autocrina e paracrinamente aumentando a fagocitose de particulas de zimosan. Com isso, podemos concluir que o ATP é um ativador endógeno do eixo imune-pineal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paracetamol is regarded as a relatively safe drug in the gastro-duodenal region of humans but recent epidemiological investigations have suggested that at high doses there may be an increased risk of ulcers and bleeding. To investigate the possibility that inflammatory conditions and gastric acidity may play a role in potentiating development of gastric mucosal injury from paracetamol in rats (as noted previously with various non-steroidal anti-inflammatory drugs) we studied the gastric irritant effects of paracetamol and some phenolic and non-phenolic analgesics and antipyretics in rats with adjuvant or collagen II induced arthritis or zymosan-induced paw inflammation and given 1.0 ml hydrochloric acid (HCl) 0.1 M and/or an i. p. injection of the cholinomimetic, acetyl-β-methyl choline chloride 5.0 mg/kg. Gastric lesions were determined 2 h after oral administration of 100 or 250 mg/kg paracetamol or at therapeutically effective doses of the phenolic or non-phenolic analgesics/antipyretics. The results showed that gastric mucosal injury occurred with all these agents when given to animals that received all treatments so indicating there is an adverse synergy of these three factors, namely: (i) intrinsic disease; (ii) hyperacidity; and (iii) vagal stimulation for rapidly promoting gastric damage, both in the fundic as well as the antral mucosa, for producing gastric damage by paracetamol, as well as the other agents. Removing one of these three predisposing factors effectively blunts/abolishes expression of this paracetamol-induced gastrotoxity in rats. These three factors, without paracetamol, did not cause significant acute gastropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. S-adenosyl-L-methionine (SAMe) had no effect on cytochrome C reduction by superoxide generated from xanthine oxidase except at high concentrations. This was due to direct inhibition of the enzyme. 2. SAMe inhibited the neutrophil respiratory burst , measured by luminol enhanced chemiluminescence, to FMLP and zymosan A but not to PMA. 3. Adenosine and methylthioadenosine (MTA) inhibited the respiratory burst elicited by FMLP. 4. SAMe inhibited the phagocytosis of latex particles by neutrophils at high concentrations but methionine and S-adenosyl L-homocysteine had no effect. 5. Treatment with SAMe had no effect on cell infiltration or PGE2 production in 6-day air pouches. 6. Treatment with SAMe at the optimum dose of 50mg/kg inhibited the early phases of carrageenan induced rat hind paw inflammation but had a lesser effect on the secondary response. The antiinflammatory effect was sustained after inhibiton of polyamine synthesis. 7. SAMe increased liver putrescine levels in the presence and absence of inflammation Spermidine levels were increased in the presence of inflammation but spermine levels were unaffected by any of the treatments. 8. MT A and adenosine increased liver putrescine and spermidine levels 9. Treatment with SAMe had no effect on the polyamine status of blood. lO.Treatment with SAMe had no effect on the levels of glutathione in liver or blood. 11.SAMe and MTA inhibited histamine and platelet-activating factor (PAF) induced hind paw inflammation but had no effect on inflammation induced by dextran, zymosan, compound 48/80, 5-hydroxytryptamine, arachidonic acid or glucose oxidase. MTA was more effective than SAMe. 12. PAP-induced rat hind paw inflammation was inhibited by isoprenaline and verapamil. Combinations of these drugs with SAMe or MT A had no further enhancement of effect. 13. Incubation of rat PMNLs with [14c ] SAMe increased the intracellular levels of S-adenosyl-L-homocysteine in a dose dependent manner, but had no effect on the intracellular levels of SAMe, adenosine or MT A. 14. Pharmacokinetic studies of plasma SAMe following a single dose of the drug (50mg/kg) i.p. demonstrated that SAMe is rapidly absorbed and metabolised

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hancornia speciosa Gomes (Apocynaceae), popularly known as ‘mangabeira’, has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and stomach disorders. Regarding the Hancornia speciosa fruits, the ethnobotany indicates its use especially for treating inflammation and tuberculosis. However, no study has been done so far to prove such biological activities. The objective was evaluation anti-inflammatory activity from the fruits of Hancornia speciosa Gomes (mangabeira). Aqueous extract was prepared by decoction, subsequently submitted the liquid-liquid fractionation. The secondary metabolites were identified by high performance liquid chromatography coupled with detector diode array (HPLC-DAD) and liquid chromatography diode array detector coupled with mass spectrometry (LC-DAD-MS). The anti-inflammatory properties of the aqueous extract, dichloromethane (CH2Cl2), ethyl acetate (EtOAc) and n-butanol (n-BuOH) fractions of the fruits from H. speciosa, as well as rutin and chlorogenic acid were investigated using in vitro and in vivo models. In vivo tests comprised the xylene-induced ear edema that was measured the formation of edema, carrageenan-induced peritonitis was evaluated the total leukocytes at 4h and zymosan-induced air pouch was measured the total leukocytes and differential cell count at 6, 24 and 48 hours, whereas in vitro tests were evaluated levels of cytokines IL-1β, IL-6, IL-12 and TNF-α using ELISA obtained of carrageenan-induced peritonitis model. The results showed the presence of rutin and chlorogenic acid were detected in the aqueous extract from H. speciosa fruits by HPLC-DAD and LC-DAD-ME. Furthermore, the aqueous extracts and fractions, as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and reduced cell migration in the animal models such as carrageenan-induced peritonitis and zymosan-induced air pouch. In addition, reduced levels of cytokines IL-1β, IL-6, IL-12 and TNF-α were observed. This is the first study that demonstrated the anti-inflammatory effect of aqueous extract from Hancornia speciosa fruits against different inflammatory agents in animal models, suggesting that their bioactive molecules, especially rutin and chlorogenic acid contributing, at least in part, to the anti-inflammatory effect of aqueous extract. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that this aqueous extract has therapeutic potential for the development of a herbal drugs with anti-inflammatory properties.