996 resultados para Ziegler-Natta catalysis
Resumo:
J Biol Inorg Chem (2007) 12:691–698 DOI 10.1007/s00775-007-0219-9
Resumo:
n.s. no.4(1980)
Resumo:
In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities
Resumo:
In the present paper some general aspects of metal complex catalysis and its applications for oxyfunctionalization of various olefins, including naturally occurring ones, via selective oxidation, hydroformylation and alkoxycarbonylation are discussed.
Resumo:
Vanadium-containing molecular sieves are redox catalysts and are good candidates as substitutes for oxide-supported V2O5 in a number of reactions. These materials have the advantage of presenting better dispersion of vanadium species, as well as shape-selective properties and controllable acidities. They may be prepared by one-pot synthesis or by post-synthesis methods and a number of techniques such as diffuse reflectance UV-visible spectroscopy, 51V nuclear magnetic resonance and electron paramagnetic resonance, to name but a few, have been used to characterize these materials. In this review, methods of preparation of vanadium-modified molecular sieves, their characterization and applications in catalysis are discussed.
Resumo:
Inorganic pyrophosphatases (PPases) are essential enzymes for every living cell. PPases provide the necessary thermodynamic pull for many biosynthetic reactions by hydrolyzing pyrophosphate. There are two types of PPases: integral membrane-bound and soluble enzymes. The latter type is divided into two non-homologous protein families, I and II. Family I PPases are present in all kingdoms of life, whereas family II PPases are only found in prokaryotes, including archae. Family I PPases, particularly that from Saccharomyces cerevisiae, are among the most extensively characterized phosphoryl transfer enzymes. In the present study, we have solved the structures of wild-type and seven active site variants of S. cerevisiae PPase bound to its natural metal cofactor, magnesium ion. These structures have facilitated derivation of the complete enzyme reaction scheme for PPase, fulfilling structures of all the reaction intermediates. The main focus in this study was on a novel subfamily of family II PPases (CBSPPase) containing a large insert formed by two CBS domains and a DRTGG domain within the catalytic domain. The CBS domain (named after cystathionine beta-synthase in which it was initially identified) usually occurs as tandem pairs with two or four copies in many proteins in all kingdoms of life. The structure formed by a pair of CBS domains is also known as a Bateman domain. CBS domains function as regulatory units, with adenylate ligands as the main effectors. The DRTGG domain (designated based on its most conserved residues) occurs less frequently and only in prokaryotes. Often, the domain co-exists with CBS domains, but its function remains unknown. The key objective of the current study was to explore the structural rearrangements in the CBS domains induced by regulatory adenylate ligands and their functional consequences. Two CBS-PPases were investigated, one from Clostridium perfringens (cpCBS-PPase) containing both CBS and DRTGG domains in its regulatory region and the other from Moorella thermoacetica (mt CBS-PPase) lacking the DRTGG domain. We additionally constructed a separate regulatory region of cpCBS-PPase (cpCBS). Both full-length enzymes and cpCBS formed homodimers. Two structures of the regulatory region of cpCBS-PPase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate, were solved. The structures were significantly different, providing information on the structural pathway from bound adenylates to the interface between the regulatory and catalytic parts. To our knowledge, these are the first reported structures of a regulated CBS enzyme, which reveal large conformational changes upon regulator binding. The activator-bound structure was more open, consistent with the different thermostabilities of the activator- and inhibitor-bound forms of cpCBS-PPase. The results of the functional studies on wild-type and variant CBS-PPases provide support for inferences made on the basis of structural analyses. Moreover, these findings indicate that CBS-PPase activity is highly sensitive to adenine nucleotide distribution between AMP, ADP and ATP, and hence to the energy level of the cell. CBS-PPase activity is markedly inhibited at low energy levels, allowing PPi energy to be used for cell survival instead of being converted into heat.
Resumo:
Den snart 200 år gamla vetenskapsgrenen organisk synteskemi har starkt bidragit till moderna samhällens välfärd. Ett av flaggskeppen för den organiska synteskemin är utvecklingen och produktionen av nya läkemedel och speciellt de aktiva substanserna däri. Därmed är det viktigt att utveckla nya syntesmetoder, som kan tillämpas vid framställningen av farmaceutiskt relevanta målstrukturer. I detta sammanhang är den ultimata målsättningen dock inte endast en lyckad syntes av målmolekylen, utan det är allt viktigare att utveckla syntesrutter som uppfyller kriterierna för den hållbara utvecklingen. Ett av de centralaste verktygen som en organisk kemist har till förfogande i detta sammanhang är katalys, eller mera specifikt möjligheten att tillämpa olika katalytiska reaktioner vid framställning av komplexa målstrukturer. De motsvarande industriella processerna karakteriseras av hög effektivitet och minimerad avfallsproduktion, vilket naturligtvis gynnar den kemiska industrin samtidigt som de negativa miljöeffekterna minskas avsevärt. I denna doktorsavhandling har nya syntesrutter för produktion av finkemikalier med farmaceutisk relevans utvecklats genom att kombinera förhållandevis enkla transformationer till nya reaktionssekvenser. Alla reaktionssekvenser som diskuteras i denna avhandling påbörjades med en metallförmedlad allylering av utvalda aldehyder eller aldiminer. De erhållna produkterna innehållende en kol-koldubbelbindning med en närliggande hydroxyl- eller aminogrupp modifierades sedan vidare genom att tillämpa välkända katalytiska reaktioner. Alla syntetiserade molekyler som presenteras i denna avhandling karakteriseras som finkemikalier med hög potential vid farmaceutiska tillämpningar. Utöver detta tillämpades en mängd olika katalytiska reaktioner framgångsrikt vid syntes av dessa molekyler, vilket i sin tur förstärker betydelsen för de katalytiska verktygen i organiska kemins verktygslåda.
Resumo:
The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.
Resumo:
Enantiopure intermediates are of high value in drug synthesis. Biocatalysis alone or combined with chemical synthesis provides powerful tools to access enantiopure compounds. In biocatalysis, chemo-, regio- and enantioselectivity of enzymes are combined with their inherent environmentally benign nature. Enzymes can be applied in versatile chemical reactions with non-natural substrates under synthesis conditions. Immobilization of an enzyme is a crucial part of an efficient biocatalytic synthesis method. Successful immobilization enhances the catalytic performance of an enzyme and enables its reuse in successive reactions. This thesis demonstrates the feasibility of biocatalysis in the preparation of enantiopure secondary alcohols and primary amines. Viability and synthetic usability of the studied biocatalytic methods have been addressed throughout this thesis. Candida antarctica lipase B (CAL-B) catalyzed enantioselective O-acylation of racemic secondary alcohols was successfully incorporated with in situ racemization in the dynamic kinetic resolution, affording the (R)-esters in high yields and enantiopurities. Side reactions causing decrease in yield and enantiopurity were suppressed. CAL-B was also utilized in the solvent-free kinetic resolution of racemic primary amines. This method produced the enantiomers as (R)-amides and (S)-amines under ambient conditions. An in-house sol-gel entrapment increased the reusability of CAL-B. Arthrobacter sp. omega-transaminase was entrapped in sol-gel matrices to obtain a reusable catalyst for the preparation enantiopure primary amines in an aqueous medium. The obtained heterogeneous omega-transaminase catalyst enabled the enantiomeric enrichment of the racemic amines to their (S)-enantiomers. The synthetic usability of the sol-gel catalyst was demonstrated in five successive preparative kinetic resolutions.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.