959 resultados para Zebu - Embryos
Resumo:
Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 mu M) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 mu M can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.
Resumo:
The aim of this study was to evaluate the efficiency of trypsin treatment on the inactivation of bovine herpesvirus type 1 (BoHV-1) on in vitro produced by fertilization and artificially infected bovine embryos. Bovine embryos on day 7 were exposed with 10 mu l of BoHV-1, Los Angeles strain 10(7.5) TCID. These embryos and control embryos were divided in two groups: submitted to the sequential washes or to the trypsin treatment according to the International Embryo Transfer Society (IETS) guidelines. The embryos and the last washing drop of each group were used as inoculum to infect Madin Darby bovine kidney (MDBK) cells and submitted to nested PCR reaction using the primer that encodes the gene conserved region of virus glycoprotein gB. The data have shown that the control embryos and their last washing drop were negative. The exposed embryos that were treated with trypsin have shown positive results on the n-PCR and MDBK culture, and their last washing drop were negative. Our data have demonstrated that the trypsin treatment was not able to eliminate the BHV-1 of the embryos, suggesting an interaction between virus and embryo.
Resumo:
In this study, we aimed at determining whether human immature dental pulp stem cells (hIDPSC) would be able to contribute to different cell types in mouse blastocysts without damaging them. Also, we analysed whether these blastocysts would progress further into embryogenesis when implanted to the uterus of foster mice, and develop human/mouse chimaera with retention of hIDPSC derivates and their differentiation. hIDPSC and mouse blastocysts were used in this study. Fluorescence staining of hIDPSC and injection into mouse blastocysts, was performed. Histology, immunohistochemistry, fluorescence in situ hybridization and confocal microscopy were carried out. hIDPSC showed biological compatibility with the mouse host environment and could survive, proliferate and contribute to the inner cell mass as well as to the trophoblast cell layer after introduction into early mouse embryos (n = 28), which achieved the hatching stage following 24 and 48 h in culture. When transferred to foster mice (n = 5), these blastocysts with hIDPSC (n = 57) yielded embryos (n = 3) and foetuses (n = 6); demonstrating presence of human cells in various organs, such as brain, liver, intestine and hearts, of the human/mouse chimaeras. We verified whether hIDPSC would also be able to differentiate into specific cell types in the mouse environment. Contribution of hIDPSC in at least two types of tissues (muscles and epithelial), was confirmed. We showed that hIDPSC survived, proliferated and differentiated in mouse developing blastocysts and were capable of producing human/mouse chimaeras.
Resumo:
Objective: To study the effect of freeze-thaw on embryos derived from intracytoplasmic sperm injection (ICSI) using surgically retrieved and ejaculated spermatozoa. Design: Retrospective study. Setting: Private IVF center. Patient(s): Three hundred eighty-three patients undergoing frozen-thawed ET cycles. Intervention(s): Testicular sperm aspiration (TESA) or percutaneous epididymal sperm aspiration (PESA) were the sperm surgical retrieval methods used for ICSI. Embryos resulting from ICSI using Surgically retrieved and ejaculated spermatozoa were frozen, thawed, and transferred. Main Outcome Measure(s): Post-thaw survival, implantation, and pregnancy rates. Result(s): No differences were found between the ejaculated sperm and TESA/PESA groups in terms of post-thaw survival rate (68.4% vs. 66.1%, respectively), pregnancy rate (20.1% vs. 16.1%), and implantation rate (10.6% vs. 12.7%). Similar results were found for those variables when comparing TESA and PESA groups. Conclusion(s): Cleavage embryos arising from ICSI cycles using testicular and epididymal spermatozoa can be frozen with survival, pregnancy,and implantation rates comparable to those obtained with ejaculated spermatozoa. (Fertil Steril (R) 2009;91:727-32. (C) 2009 by American Society for Reproductive Medicine.)
Resumo:
The objective of the present study was the exogenous stimulation of ovarian activity and definition of embryo collection, and transfer protocols, in the domestic cat for potential application in non-domestic endangered species. Sixteen adult queens and two adult male reproducers kept in the experimental cat house at the Morphology sector at the Veterinary Department (DVT), UFV, were used in this study. All the queens received a single application of 150 IU Equine Chorionic Gonadotropin (eCG) in the post estrus to induce ovarian activity and 80 to 84 hours later, received a single application of 100 UI Human Chorionic Gonadotropin (hCG) to induce ovulation. After hCG application, only the donor queens were naturally mated. The receptor queens received extra stimulus for induction of ovulation through manipulation of an intravaginal swab. Five to six days after hCG application, the donor queens were subjected to a laparotomy for embryo collection that was performed by trans-horn uterine washing. On average, six embryos were surgically inovulated. They were classified as type I and III compact morula and blastocysts in four receptor queens. Three animals presented pregnancy confirmed by ultrasound at day 36 and two of these animals gave birth to litters of two and four offsprings, respectively, at 66 and 63 days after induction of ovulation. Except for one still birth, all the offspring developed normally.
Resumo:
Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, plants, microalgae, fungi, bacteria, viruses and cell lines. The aim of this study was to assess the toxic effects of aqueous, methanolic and hexane crude extracts of benthic and picoplanktonic cyanobacteria isolated from estuarine environments, towards the nauplii of the brine shrimp Artemia salina and embryos of the sea urchin Paracentrotus lividus. The A. salina lethality test was used as a frontline screen and then complemented by the more specific sea urchin embryo-larval assay. Eighteen cyanobacterial isolates, belonging to the genera Cyanobium, Leptolyngbya, Microcoleus, Phormidium, Nodularia, Nostoc and Synechocystis, were tested. Aqueous extracts of cyanobacteria strains showed potent toxicity against A. salina, whereas in P. lividus, methanolic and aqueous extracts showed embryo toxicity, with clear effects on development during early stages. The results suggest that the brackishwater cyanobacteria are producers of bioactive compounds with toxicological effects that may interfere with the dynamics of invertebrate populations.
Resumo:
A thesis submitted in fulfilment of the requirements for the degree of Masters in Molecular Genetics and Biomedicine
Resumo:
Dissertação de mestrado em Molecular Genetics
Resumo:
Between 2011 and 2012, 213 heterosexual couples undergoing fertility treatments in a Portuguese public fertility centre were systematically recruited to assess factors associated with willingness to donate embryos for research. Data were collected by questionnaire. Most couples (87.3%; 95% CI 82.1 to 91.5) were willing to donate embryos for research, citing benefits for science, health and infertile patients. Almost all couples (94.3%; 95% CI 89.8 to 96.7) reached consensus about the decision. Willingness to donate was more frequent in women younger than 36 years (adjusted OR 3.06; 95% CI 1.23 to 7.61) and who considered embryo research to be very important (adjusted OR: 6.32; 95% CI 1.85 to 21.64), and in Catholic men (adjusted OR 4.16; 95% CI 1.53 to 11.30). Those unwilling to donate reported conceptualizing embryos as children or living beings and a lack of information or fears about embryo research. Men with higher levels of trait anxiety (adjusted OR 0.90; 95% CI 0.84 to 0.96) were less frequently willing to donate. Future research on embryo disposition decision-making should include the assessment of gender differences and psychosocial factors. Ethically robust policies and accurate information about the results of human embryo research are required.
Resumo:
Introduction. Decision-making on embryo disposition is a source of distress and is subject to change over time. This paper analyses the willingness of couples undergoing in vitro fertilization to donate cryopreserved embryos for research from 15 days after embryo transfer to 12 months later, taking into account the influence of psychosocial, demographic, and reproductive factors. Materials and methods. Prospective longitudinal study, with 74 heterosexual couples undergoing in vitro fertilization in a public fertility centre in Portugal, recruited between 2011 and 2012. Participants were evaluated twice: 15 days after embryo transfer and 12 months later. Results. A significant decrease in patients’ willingness to donate embryos for research over time was observed [86.5% to 73.6%; relative risk (RR) = 0.85; 95% CI 0.76–0.95]. A higher education level (>12 years) [adjusted RR (RRadj) = 0.79; 95% CI 0.64–0.96], considering research on human embryos to be important (vs. very important) (RRadj = 0.59; 95% CI 0.39–0.85) and practicing a religion less than once a month (vs. at least once a month) (RRadj = 0.73; 95% CI 0.53–1.00) seemed associated with unwillingness to donate embryos for research over time. Change towards non-donation happened mainly among couples who first considered that it was better to donate than wasting the embryos. Change towards donation occurred mostly among those stating that their priority at time 1 was to have a baby and who became pregnant in the meantime. Conclusions. Quality of care guided by patients’ characteristics, values, preferences, and needs calls for considering the factors and reasons underlying couples’ willingness to donate embryos for research over time as a topic in psychosocial guidelines for infertility and medically assisted reproductive care.
Resumo:
Background: Systematic knowledge on the factors that influence the decisions of IVF users regarding embryo donation for research is a core need for patient-centred policies and ethics in clinical practice. However, no systematic review has been provided on the motivations of patients who must decide embryo disposition. This paper fills this gap, presenting a systematic review of quantitative and qualitative studies, which synthesizes the current body of knowledge on the factors and reasons associated with IVF patients’ decisions to donate or not to donate embryos for research. Methods: A systematic search of studies indexed in PubMed, ISIWoK and PsycINFO, published before November 2013, was conducted. Only empirical, peer-reviewed, full-length, original studies reporting data on factors and reasons associated with the decision concerning donation or non-donation of embryos for research were included. Eligibility and data extraction were performed by two independent researchers and disagreements were resolved by discussion or a third reviewer, if required. The main quantitative findings were extracted and synthesized and qualitative data were assessed by thematic content analysis. Results: A total of 39 studies met the inclusion criteria and were included in the review. More than half of the studies (n ¼ 21) used a quantitative methodology, and the remaining were qualitative (n ¼ 15) or mixed-methods (n ¼ 3) studies. The studies were derived mainly from European countries (n ¼ 18) and the USA(n ¼ 11). The proportion of IVF users who donated embryos for research varied from 7% in a study in France to 73% in a Swiss study. Those who donate embryos for research reported feelings of reciprocity towards science and medicine, positive views of research and high levels of trust in the medical system. They described their decision as better than the destruction of embryos and as an opportunity to help others or to improve health and IVF treatments. The perception of risks, the lack of information concerning research projects and the medical system and the conceptualization of embryos in terms of personhood were the most relevant motives for not donating embryos for research. Results relating to the influence of sociodemographic characteristics and reproductive and gynaecological history were mostly inconclusive. Conclusions: Three iterative and dynamic dimensions of the IVF patients’ decision to donate or not to donate embryos for research emerged from this review: the hierarquization of the possible options regarding embryo disposition, according to the moral, social and instrumental status attributed to embryos; patients’ understanding of expectations and risks of the research on human embryos; and patients’ experiences of information exchange and levels of trust in the medical-scientific institutions.
Resumo:
La ingeniería genética y la reprogramación de organismos vivos representan las nuevas fronteras biotecnológicas que permitirán generar animales con modificaciones precisas en sus genomas para un sinnúmero de aplicaciones biomédicas y agropecuarias. Las técnicas para inducir modificaciones génicas intencionales en animales, especialmente en especies mayores de interés agropecuario, se encuentran rezagadas si se compara con los avances significativos que se han producido en el área de la transgénesis de roedores de laboratorio, especialmente el ratón. Es así que, el presente proyecto persigue desarrollar y optimizar protocolos para generar embriones bovinos transgénicos para aplicaciones biotecnológicas. La estrategia propuesta, se basa en conseguir la presencia simultánea en el interior celular de una enzima de restricción (I-SceI) más un transgén (formado por casetes de expresión de una proteína fluorescente -ZsGreen1- y neomicina fosfotransferasa). Específicamente, proyectamos estudiar una vía alternativa para generar embriones bovinos transgénicos mediante la incorporación del transgén (casetes ZsGreen1 y neo) flanqueado por sitios I-SceI más la enzima I-SceI al interior del ovocito junto con el espermatozoide durante la técnica conocida como inyección intracitoplasmática de espermatozoides (ICSI). Los embriones así generados se cultivarán in vitro, inspeccionándolos diariamente para detectar la emisión de fluorescencia, indicativa de la expresión de la proteína ZsGreen1. Los embriones que alcancen el estado de blastocisto y expresen el transgén se transferirán quirúrgicamente al útero de ovejas sincronizadas y se mantendrán durante 7 días. Al cabo de este período, los embriones se recolectarán quirúrgicamente del útero ovino y se transportarán al laboratorio para determinar el número de sitios de integración y número de copias del transgén mediante el análisis de su ADN por Southern blot. Se prevé que los resultados de esta investigación permitirán sentar las bases para el desarrollo de métodos eficientes para obtener modificaciones precisas en el genoma de los animales domésticos para futuras aplicaciones biotecnológicas. Genetic engineering and reprogrammed organisms represent the new biotechnological frontiers which will make possible to generate animals with precise genetic modifications for agricultural and biomedical applications. Current methods used to generate genetically modified large animals, lay behind those used in laboratory animals, specially the mouse. Therefore, we seek to develop and optimize protocols to produce transgenic bovine embryos through the use of a non-viral vector. The strategy involves the simultaneous presence inside the cell of a restriction enzyme (I-SceI) and a transgene (carrying cassettes for a fluorescent protein -ZsGreen1- and neomycin phosphotransferase) flanked by restriction sites for the endonuclease. We plan to develop an alternative approach to generate transgenic bovine embryos by coinjecting the transgene flanked by I-SceI restriction sites plus the enzyme I-SceI along with the spermatozoon during the technique known as intracytoplasmic sperm injection (ICSI). Embryos will be cultured in vitro and inspected daily with a fluorescence microscope to characterize transgene expression. Embryos that reach the blastocyst stage and express the transgene will be surgically transfer to the uterus of a synchronized ewe. After 7 days, the embryos will be flushed out the ovine uterus and transported to the laboratory to determine the number of integration sites and transgene copies by Southern blot. We anticipate that results from this research will set the stage for the development of efficient strategies to achieve precise genetic modifications in large domestic animals for future biotechnological applications.