38 resultados para ZYMOMONAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the seventeenth of a series of symposia devoted to talks by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, and sixteenth were at Kansas State University, the second and fourth were at the University of Nebraska-Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh, tenth, thirteenth, and seventeenth were at Iowa State University, the eighth and fourteenth were at the University of Missouri–Columbia, and the eleventh and fifteenth were at Colorado State University. Next year's symposium will be at the University of Colorado. Symposium proceedings are edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover work in progress. ContentsThe Effect of Polymer Dosage Conditions on the Properties of ProteinPolyelectrolyte Precipitates, K. H. Clark and C. E. Glatz, Iowa State University An Immobilized Enzyme Reactor/Separator for the Hydrolysis of Casein by Subtilisin Carlsberg, A. J. Bream, R. A. Yoshisato, and G. R. Carmichael, University of Iowa Cell Density Measurements in Hollow Fiber Bioreactors, Thomas Blute, Colorado State University The Hydrodynamics in an Air-Lift Reactor, Peter Sohn, George Y. Preckshot, and Rakesh K. Bajpai, University of Missouri–Columbia Local Liquid Velocity Measurements in a Split Cylinder Airlift Column, G. Travis Jones, Kansas State University Fluidized Bed Solid Substrate Trichoderma reesei Fermentation, S. Adisasmito, H. N. Karim, and R. P. Tengerdy, Colorado State University The Effect of 2,4-D Concentration on the Growth of Streptanthus tortuosis Cells in Shake Flask and Air-Lift Permenter Culture, I. C. Kong, R. D. Sjolund, and R. A. Yoshisato, University of Iowa Protein Engineering of Aspergillus niger Glucoamylase, Michael R. Sierks, Iowa State University Structured Kinetic Modeling of Hybidoma Growth and Monoclonal Antibody Production in Suspension Cultures, Brian C. Batt and Dhinakar S. Kampala, University of Colorado Modelling and Control of a Zymomonas mobilis Fermentation, John F. Kramer, M. N. Karim, and J. Linden, Colorado State University Modeling of Brettanomyces clausenii Fermentation on Mixtures of Glucose and Cellobiose, Max T. Bynum and Dhinakar S. Kampala, University of Colorado, Karel Grohmann and Charles E. Yyman, Solar Energy Research Institute Master Equation Modeling and Monte Carlo Simulation of Predator-Prey Interactions, R. 0. Fox, Y. Y. Huang, and L. T. Fan, Kansas State University Kinetics and Equilibria of Condensation Reactions Between Two Different Monosaccharides Catalyzed by Aspergillus niger Glucoamylase, Sabine Pestlin, Iowa State University Biodegradation of Metalworking Fluids, S. M. Lee, Ayush Gupta, L. E. Erickson, and L. T. Fan, Kansas State University Redox Potential, Toxicity and Oscillations in Solvent Fermentations, Kim Joong, Rakesh Bajpai, and Eugene L. Iannotti, University of Missouri–Columbia Using Structured Kinetic Models for Analyzing Instability in Recombinant Bacterial Cultures, William E. Bentley and Dhinakar S. Kompala, University of Colorado

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 20th Annual Biochemical Engineering Symposium was held at Kansas State University on April 21,1990. The objectives of the symposium were to provide: (i) a forum for informal discussion of biochemical engineering research being conducted at the participating institutions and (ii) an opportunity for students to present and publish their work. Twenty-eight papers presented at the symposium are included in this proceedings. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of the papers that will be published in full elsewhere. The program of the symposium and a list of the participants are included in the proceedings. ContentsCell Separations and Recycle Using an Inclined Settler, Ching-Yuan Lee, Robert H. Davis and Robert A. Sclafani Micromixing and Metabolism in Bioreactors: Characterization of a 14 L Fermenter, K.S. Wenger and E.H. Dunlop Production, Purification, and Hydrolysis Kinetics of Wild-Type and Mutant Glucoamylases from Aspergillus Awamori, Ufuk Bakir, Paul D. Oates, Hsiu-Mei Chen and Peter J. Reilly Dynamic Modeling of the Immune System, Barry Vant-Hull and Dhinakar S. Kompala Dynamic Modeling of Active Transport Across a Biological Cell: A Stochastic Approach, B.C. Shen, S.T. Chou, Y.Y. Chiu and L.T. Fan Electrokinetic Isolation of Bacterial Vesicles and Ribosomes, Debra T.L. Hawker, Robert H. Davis, Paul W. Todd, and Robert Lawson Application of Dynamic Programming for Fermentative Ethanol Production by Zymomonas mobilis, Sheyla L. Rivera and M. Nazmul Karim Biodegradation of PCP by Pseudomonas cepacia, R. Rayavarapu, S.K. Banerji, and R.K. Bajpai Modeling the Bioremediation of Contaminated Soil Aggregates: a Phenomenological Approach, S. Dhawan, L.E. Erickson and L.T. Fan Biospecific Adsorption of Glucoamylase-I from Aspergillus niger on Raw Starch, Bipin K. Dalmia and Zivko L. Nikolov Overexpression in Recombinant Mammalian Cells: Effect on Growth Rate and Genetic Instability, Jeffrey A. Kern and Dhinakar S. Kompala Structured Mathematical Modeling of Xylose Fermentation, A.K. Hilaly, M.N. Karim, I. C. Linden and S. Lastick A New Culture Medium for Carbon-limited Growth of Bacillus thuringiensis, W. -M. Liu and R.K. Bajpai Determination of Sugars and Sugar Alcohols by High Performance Ion Chromatography, T. J. Paskach, H.-P. Lieker, P.J. Reilly, and K. Thielecke Characterization of Poly-Asp Tailed B-Galactosidase, M.Q. Niederauer, C.E. Glatz, l.A. Suominen, C.F. Ford, and M.A. Rougvie Computation of Conformations and Energies of cr-Glucosyl Disaccharides, Jing Zepg, Michael K. Dowd, and Peter J. Reilly Pentachlorophenol Interactions with Soil, Shein-Ming Wei, Shankha K. Banerji, and Rakesh K. Bajpai Oxygen Transfer to Viscous Liquid Media in Three-Phase Fluidized Beds of Floating Bubble Freakers, Y. Kang, L.T. Fan, B.T. Min and S.D. Kim Studies on the Invitro Development of Chick Embryo, A. Venkatraman and T. Panda The Evolution of a Silicone Based Phase-Separated Gravity-Independent Bioreactor, Peter E. Villeneuve and Eric H. Dunlop Biodegradation of Diethyl Phthalate, Guorong Zhang, Kenneth F. Reardon and Vincent G. Murphy Microcosm Treatability of Soil Contaminated with Petroleum Hydrocarbons, P. Tuitemwong, S. Dhawan, B.M. Sly, L.E. Erickson and J.R. Schlup

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lactonohydrolase from Fusarium oxysporum AKU 3702 is an enzyme catalyzing the hydrolysis of aldonate lactones to the corresponding aldonic acids. The amino acid sequences of the NH2 terminus and internal peptide fragments of the enzyme were determined to prepare synthetic oligonucleotides as primers for the PCR. An approximate 1,000-base genomic DNA fragment thus amplified was used as the probe to clone both genomic DNA and cDNA for the enzyme. The lactonohydrolase genomic gene consists of six exons separated by five short introns. A novel type of RNA editing, in which lactonohydrolase mRNA included the insertion of guanosine and cytidine residues, was observed. The predicted amino acid sequence of the cloned lactonohydrolase cDNA showed significant similarity to those of the gluconolactonase from Zymomonas mobilis, and paraoxonases from human and rabbit, forming a unique superfamily consisting of C-O cleaving enzymes and P-O cleaving enzymes. Lactonohydrolase was expressed under the control of the lac promoter in Escherichia coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An mAb was raised to the C5 phagosomal antigen in Paramecium multimicronucleatum. To determine its function, the cDNA and genomic DNA encoding C5 were cloned. This antigen consisted of 315 amino acid residues with a predicted molecular weight of 36,594, a value similar to that determined by SDS-PAGE. Sequence comparisons uncovered a low but significant homology with a Schizosaccharomyces pombe protein and the C-terminal half of the β-fructofuranosidase protein of Zymomonas mobilis. Lacking an obvious transmembrane domain or a possible signal sequence at the N terminus, C5 was predicted to be a soluble protein, whereas immunofluorescence data showed that it was present on the membranes of vesicles and digestive vacuoles (DVs). In cells that were minimally permeabilized but with intact DVs, C5 was found to be located on the cytosolic surface of the DV membranes. Immunoblotting of proteins from the purified and KCl-washed DVs showed that C5 was tightly bound to the DV membranes. Cryoelectron microscopy also confirmed that C5 was on the cytosolic surface of the discoidal vesicles, acidosomes, and lysosomes, organelles known to fuse with the membranes of the cytopharynx, the DVs of stages I (DV-I) and II (DV-II), respectively. Although C5 was concentrated more on the mature than on the young DV membranes, the striking observation was that the cytopharyngeal membrane that is derived from the discoidal vesicles was almost devoid of C5. Approximately 80% of the C5 was lost from the discoidal vesicle-derived membrane after this membrane fused with the cytopharyngeal membrane. Microinjection of the mAb to C5 greatly inhibited the fusion of the discoidal vesicles with the cytopharyngeal membrane and thus the incorporation of the discoidal vesicle membranes into the DV membranes. Taken together, these results suggest that C5 is a membrane protein that is involved in binding and/or fusion of the discoidal vesicles with the cytopharyngeal membrane that leads to DV formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS) and acetolactate synthase (ALS) are thiamine diphosphate (ThDP)-dependent enzymes that catalyze the decarboxylation of pyruvate to give a cofactor-bound hydroxyethyl group, which is transferred to a second molecule of pyruvate to give 2-acetolactate. AHAS is found in plants, fungi, and bacteria, is involved in the biosynthesis of the branched-chain amino acids, and contains non-catalytic FAD. ALS is found only in some bacteria, is a catabolic enzyme required for the butanediol fermentation, and does not contain FAD. Here we report the 2.3-Angstrom crystal structure of Klebsiella pneumoniae ALS. The overall structure is similar to AHAS except for a groove that accommodates FAD in AHAS, which is filled with amino acid side chains in ALS. The ThDP cofactor has an unusual conformation that is unprecedented among the 26 known three-dimensional structures of nine ThDP-dependent enzymes, including AHAS. This conformation suggests a novel mechanism for ALS. A second structure, at 2.0 Angstrom, is described in which the enzyme is trapped halfway through the catalytic cycle so that it contains the hydroxyethyl intermediate bound to ThDP. The cofactor has a tricyclic structure that has not been observed previously in any ThDP-dependent enzyme, although similar structures are well known for free thiamine. This structure is consistent with our proposed mechanism and probably results from an intramolecular proton transfer within a tricyclic carbanion that is the true reaction intermediate. Modeling of the second molecule of pyruvate into the active site of the enzyme with the bound intermediate is consistent with the stereochemistry and specificity of ALS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thiamin (vitamin B1) is required in animal diets because it is the precursor of the enzyme cofactor, thiamin diphosphate. Unlike other B vitamins, the dietary thiamin requirement is proportional to non-fat energy intake but there is no obvious biochemical reason for this relationship. In the present communication we show for two enzymes that the cofactor undergoes a slow destruction during catalysis, which may explain the interdependence of thiamin and energy intakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work investigated the potential of different residual lignocellulosic materials generated in rural and urban areas (coconut fibre mature, green coconut shell and mature coconut shell), and vegetable cultivated in inhospitable environments (cactus) aimed at the production of ethanol, being all materials abundant in the Northeast region of Brazil. These materials were submitted to pretreatments with alkaline hydrogen peroxide followed by sodium hydroxide (AHP-SHP), autohydrolysis (AP), hydrothermal catalyzed with sodium hydroxide (HCSHP) and alkali ethanol organosolv (AEOP). These materials pretreated were submitted to enzymatic hydrolysis and strategies of simultaneous saccharification and fermentation (SSF) and saccharification and fermentation semi-simultaneous (SSSF) by Saccharomyces cerevisiae, Zymomonas mobilis and Pichia stipitis. It was also evaluated the presence of inhibitory compounds (hydroxymethylfurfural, furfural, acetic acid, formic acid and levulinic acid) and seawater during the fermentative process. Materials pretreated with AHP-SHP have resulted in delignification of the materials in a range between 54 and 71%, containing between 51.80 and 54.91% of cellulose, between 17.65 and 28.36% of hemicellulose, between 7.99 and 10.12% of lignin. Enzymatic hydrolysis resulted in the conversions in glucose between 68 and 76%. Conversion yields in ethanol using SSF and SSSF for coconut fibre mature pretreated ranged from 0.40 and 0.43 g/g, 0.43 and 0.45 g/g, respectively. Materials pretreated by AP showed yields of solids between 42.92 and 92.74%, containing between 30.65 and 51.61% of cellulose, 21.34 and 41.28% of lignin. Enzymatic hydrolysis resulted in glucose conversions between 84.10 and 92.52%. Proceeds from conversion into ethanol using green coconut shell pretreated, in strategy SSF and SSSF, were between 0.43 and 0.45 g/g. Coconut fibre mature pretreated by HCSHP presented solids yields between 21.64 and 60.52%, with increased in cellulose between 28.40 and 131.20%, reduction of hemicellulose between 43.22 and 69.04% and reduction in lignin between 8.27 and 89.13%. Enzymatic hydrolysis resulted in the conversion in glucose of 90.72%. Ethanol yields using the SSF and SSSF were 0.43 and 0.46 g/g, respectively. Materials pretreated by AEOP showed solid reductions between 10.75 and 43.18%, cellulose increase up to 121.67%, hemicellulose reduction up to 77.09% and lignin reduced up to 78.22%. Enzymatic hydrolysis resulted in the conversion of glucose between 77.54 and 84.27%. Yields conversion into ethanol using the SSF and SSSF with cactus pretreated ranged from 0.41 and 0.44 g/g, 0.43 and 0.46 g/g, respectively. Fermentations carried out in bioreactors resulted in yields and ethanol production form 0.42 and 0.46 g/g and 7.62 and 12.42 g/L, respectively. The inhibitory compounds showed negative synergistic effects in fermentations performed by P. stipitis, Z. mobilis and S. cerevisiae. Formic acid and acetic acid showed most significant effects among the inhibitory compounds, followed by hydroxymethylfurfural, furfural and levulinic acid. Fermentations carried out in culture medium diluted with seawater showed promising results, especially for S. cerevisiae (0.50 g/g) and Z. mobilis (0.49 g/g). The different results obtained in this study indicate that lignocellulosic materials, pretreatments, fermentative processes strategies and the microorganisms studied deserve attention because they are promising and capable of being used in the context of biorefinery, aiming the ethanol production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A busca por combustíveis alternativos, tais como os biocombustíveis, torna-se necessária devido à crescente demanda por combustíveis em todos os setores da atividade humana, sendo que quase toda energia consumida no mundo provém do petróleo, uma fonte limitada, que emite grande quantidade de gases poluentes. Devido à grande diversidade de culturas oleoginosas no país, o Brasil demonstra potencial para substituição do diesel pelo biodiesel. No processo de obtenção deste, o óleo vegetal sofre uma transesterificação, sob a ação de um catalisador básico e na presença de um álcool, formando três moléculas de ésteres metílicos ou etílicos de ácidos graxos, que constituem o biodiesel em sua essência, liberando uma molécula de glicerol, que é o coproduto mais abundante desta reação. Sendo assim, a utilização do glicerol residual é uma ótima alternativa para agregar valor à cadeia produtiva do biodiesel, minimizar os danos de um possível descarte inadequado, além de diminuir os custos do processo. Com este intuito, este trabalho propõe o uso do glicerol residual como fonte de carbono para produção de exopolissacarídeos (EPSs). Para tal, foram utilizadas linhagens de bactérias mencionadas na literatura como produtoras de EPSs de importância comercial, sendo elas: Xanthomonas campestris pv. mangiferaeindicae IBSBF 1230, Pseudomonas oleovarans NRRL B-14683, Sphingomonas capsulata NRRL B-4261 e Zymomonas mobilis NRRL B-4286. Os cultivos foram realizados em meio apropriado para cada micro-organismo, e como fontes de carbono foram testadas a sacarose, o glicerol residual e uma mistura de ambos na proporção de 1:1 m/m. Os meios foram inoculados com suspensão da bactéria em estudo, sendo avaliados parâmetros relativos ao crescimento celular e à produção de EPSs. Para X. campestris pv. mangiferaeindicae, foram determinadas algumas propriedades reológicas e térmicas dos EPSs produzidos com as diferentes fontes de carbono, bem como o índice de emulsificação com diferentes óleos vegetais. X. campestris apresentou uma concentração de EPSs em torno de 4 g.L-1 em todos os meios estudados, comportamento similar ao da bactéria P. oleovorans, diferindo apenas no meio contendo sacarose (0,8 g.L-1 ). S. capsulata apresentou uma maior concentração de EPSs em meios contendo sacarose e a mistura de sacarose com glicerol residual, em torno de 3,4 g.L-1 , e em meio contendo glicerol residual este valor caiu para 1,7 g.L-1 . Já Z. mobilis apresentou um melhor resultado em meio contendo sacarose e glicerol residual, atingindo 1,3 g.L-1 , sendo que em meio contendo somente sacarose e glicerol residual estes valores foram inferiores alcançando 0,2 e 0,7 g.L-1 , respectivamente. Quase todas as bactérias atingiram a fase estacionária em 24 h de cultivo e o pH permaneceu praticamente constante, sendo verificada uma queda mais acentuada somente para Z. mobilis. O comportamento reológico foi similar para as xantanas produzidas nos diferentes meios, entretanto a viscosidade inicial foi maior com o meio a sacarose (637 cP), seguido da mistura de sacarose com glicerol residual (279 cP) e glicerol residual (60 cP). O IE24 foi superior quando utilizado o óleo de milho, atingindo valores de 97, 72 e 64 % em sacarose, mistura de sacarose com glicerol e glicerol residual, respectivamente. Desta forma, pode-se afirmar que a mudança na fonte de carbono afeta estas propriedades.