962 resultados para Yang Zhenzong
Resumo:
By introducing an appropriate parent action and considering a perturbative approach, we establish, up to fourth order terms in the field and for the full range of the coupling constant, the equivalence between the non-commutative Yang-Mills-ChernSimons theory and the non-commutative, non-Abelian self-dual model. In doing this, we consider two different approaches by using both the Moyal star-product and the Seiberg-Witten map. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this Letter, an alternative string theory in twistor space is proposed for describing perturbative N=4 super-Yang-Mills theory. Like the recent proposal of Witten, this string theory uses twistor worldsheet variables and has manifest spacetime superconformal invariance. However, in this proposal, tree-level super-Yang-Mills amplitudes come from open string tree amplitudes as opposed to coming from D-instanton contributions.
Resumo:
Starting from the Generating functional for the Green Function (GF), constructed from the Lagrangian action in the Duffin-Kemmer-Petiau (DKP) theory (L-approach) we strictly prove that the physical matrix elements of the S-matrix in DKP and Klein-Gordon-Fock (KGF) theories coincide in cases of interacting spin O particles with external and quantized Maxwell and Yang-Mills fields and in case of external gravitational field (without or with torsion), For the proof we use the reduction formulas of Lehmann, Symanzik and Zimmermann (LSZ). We prove that many photons and Yang-Mills particles GF coincide in both theories too. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Using an infinite number of fields, we construct actions for D = 4 self-dual Yang-Mills with manifest Lorentz invariance and for D = 10 super-Yang-Mills with manifest super-Poincare invariance. These actions are generalizations of the covariant action for the D = 2 chiral boson which was first studied by McClain, Wu, Yu and Wotzasek.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, theta) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the d = 10 superstring.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We have studied the null plane hamiltonian structure of the free Yang Mills fields. Following the Dirac's procedure for constrained systems we have performed a detailed analysis of the constraint structure of the model and we give the generalized Dirac brackets for the physical variables. Using the correspondence principle in the Dime's brackets we obtain the same commutators present in the literature and new ones.
Resumo:
After adding 7 auxiliary scalars to the d = 10 super-Yang-Mills action, 9 of the 16 supersymmetries close off-shell. In this Letter, these 9 supersymmetry generators are related by dimensional reduction to scalar and vector topological symmetry in N = 2, d = 8 twisted super-Yang-Mills. Furthermore, a gauge-invariant superspace action is constructed for d = 10 super-Yang-Mills where the superfelds depend on 9 anticommuting theta variables. (c) 2007 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.
Resumo:
We carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Yang-Mills equations only admit a Lagrangian for gauge groups which are either semisimple or Abelian, or a direct product of groups of both kinds. © 1988.