885 resultados para YBCO-coated conductor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of electrical resistivity of an insulator-conductor composite, namely, wax-graphite composite, with parameters such as volume fraction, grain size, and temperature has been studied. A model is proposed to explain the observed variations, which assumes that the texture of the composite consists of insulator granules coated with conducting particles. The resistivity of these materials is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of resistivity with temperature has also been explained with the help of this model and it is attributed to the change in contact area. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca. (C) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PREPARATION OF COATED MICROTOOLS FOR ELECTROCHEMICAL MACHINING APPLICATIONS Ajaya K. Swain, M.S. University of Nebraska, 2010 Advisor: K.P. Rajurkar Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in higher material removal, better surface finish, and increased wear resistance. However, a study on the performance of coated tools in micromachining has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. Besides the technical requirement, economic and environmental aspects of the material and the coating technique used also play a significant role in coating microtools. This, in fact, restricts the range of coating materials and the type of coating process. Handling is another major issue in case of microtools purely because of their miniature size. This research focuses on the preparation of coated microtools for pulse electrochemical machining by electrodeposition. The motivation of this research is derived from the fact that although there were reports of improved machining by using insulating coatings on ECM tools, particularly in ECM drilling operations, not much literature was found relating to use of metallic coating materials in other ECM process types. An ideal ECM tool should be good thermal and electrical conductor, corrosion resistant, electrochemically stable, and stiff enough to withstand electrolyte pressure. Tungsten has almost all the properties desired in an ECM tool material except being electrochemically unstable. Tungsten can be oxidized during machining resulting in poor machining quality. Electrochemical stability of a tungsten ECM tool can be improved by electroplating it with nickel which has superior electrochemical resistance. Moreover, a tungsten tool can be coated in situ reducing the tool handling and breakage frequency. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material (about 28%) than the uncoated tool under similar conditions and was more electrochemical stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green's function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green's functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the scattering analysis of a circular cylindrical structure, the impedance boundary condition (IBC) can approximate and simplify the perfect electric conductor (PEC) boundary condition. The circular cylinder problem can be solved with modal methods but they require a large number of terms when the cylinder radius is large in terms of the wave length. The uniform theory of diffraction (UTD) [1] is commonly used to overcome this issue. The two-dimensional problem of scattering on a circular cylinder covered by a dielectric layer has been analyzed by [2]–[5], but their solutions either do not consider oblique incidence, fail on the transition region or use a constant surface impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For small or medium size conformal array antennas in terms of the wave length, modal solutions in spectral domain for mutual coupling analysis are convenient for canonical shapes such as circular cylinder [1] or sphere [2], but as the antenna dimensions increase a large number of terms are necessary. For large structures the uniform theory of diffraction (UTD) is commonly used to solve this problem for canonical and arbitrarily convex shaped perfect electric conductor (PEC) surfaces [3]. A UTD solution for mutual coupling on an impedance cylinder has been introduced in [4], [5] but using a constant surface impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joints has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Additionally, fatigue tests under constant cyclic stress and loading-unloading ramps have been carried out in order to evaluate the electromechanical behavior of the joints and the effect of maximum applied stress on the critical current. Finally, a preliminary numerical study by means of the Finite Element Method (FEM) of the electromechanical behavior of the joints between commercial HTS is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of surface plasmonic fibre devices were fabricated by depositing multiple thin coatings on a lapped section of a standard single mode telecoms fibre forming a D-shaped section and then inscribing a grating-type structure using UV light. The coatings consisted of base coatings of semi-conductor (germanium) and dielectric (silicon dioxide) materials, followed by different metals. These fibre devices showed high spectral refractive index sensitivity with high coupling efficiency in excess of 40 dB for indices in the aqueous regime and below, with estimated index sensitivities of Lambda lambda/Lambda n = 90-800 nm from 1 to 1.15 index range and Lambda lambda/Lambda n = 1200-4000 nm for refractive indices from 1.33 to 1.39. (C) 2009 Elsevier Inc. All rights reserved.