974 resultados para YAG ROD LASER
Resumo:
报道了采用带有微柱镜的激光二极管阵列(LDA)双侧面90°排布抽运的Yb:YAG板条激光器,实验中使用的激光晶体尺寸为6mm×10mm×1mm,掺杂原子数分数为3%。抽运光通过自行设计的聚光系统聚焦成10mm×1mm的光斑进行抽运,聚光系统的效率为75%,晶体表面功率密度达到1.9kW/cm^2,晶体内抽运光交叠区的体功率密度达到38kW/cm^3,远高于阈值的1.7kW/cm^3。当激光器采用平一凹腔结构,耦合输出为6%时激光单脉冲输出能量最高为25.5mJ,斜率效率为13%。插入声光调Q晶体后获得4.
Resumo:
通过热沉积系数研究在激光提取条件下掺杂原子分数为1.0%的Nd:YAG陶瓷激光器中热沉积问题.热沉积系数定义为热沉积功率与激光器输出功率之比.在理论分析基础上,通过测量激光器斜率效率来间接测定热沉积系数,实验测定的热沉积系数值为0.63.建立激光提取条件下Nd:YAG陶瓷发热模型,讨论了影响热沉积系数的主要因素.结果表明:热沉积系数对Nd:YAG陶瓷的辐射量子效率、交叠效率以及激光提取效率的变化非常敏感.为有效减少介质内热沉积,在激光器优化设计中交叠效率和激光提取效率是需要着重考虑的参数.所得结果可为进一
Resumo:
为了同时补偿固体增益介质的热致双折射及热透镜效应,进一步提高重复频率1 kHz激光二极管(LD)侧向抽运高平均功率电光调Q Nd:YAG激光器的输出功率,设计了一种完全消除热退偏损耗的双调Q开关谐振腔结构,此结构在传统调Q谐振腔的基础上沿着偏振片的退偏方向增加了一个调Q谐振支路,并使得激光从增益介质方向输出。实验结果表明,此激光器的单脉冲能量比单Q开关结构的非补偿腔输出能量高出74.7%。当侧面抽运的激光二极管输出脉冲能量达到307 mJ时,激光输出能量达到26.2 mJ,光-光转换效率为8.5%,光束发
Resumo:
文中报道了一台采用激光二极管部分边缘泵浦方式的高功率薄片激光器,晶体尺寸是1 mm×10 mm×60 mm。Cr4+:YAG被用来作为被动调Q晶体,在重复频率高于10kHz时,获得了脉宽10ns,平均功率70W,斜线效率为36\%的激光输出。通过控制泵浦光束直径的大小,我们在厚度方向得到了近似衍射极限的光束输出。整个激光器结构紧凑,大小为60 mm×174 mm×150 mm。
Resumo:
Low-threshold and highly efficient continuous-wave laser performance of Yb:Y3Al5O12 (Yb:YAG) single crystal grown by a temperature gradient technique (TGT) was achieved at room temperature. The laser can be operated at 1030 and 1049 nm by varying the transmission of the output coupler. Slope efficiencies of 57% and 68% at 1049 and 1030 nm, respectively, were achieved for 10 at. % Yb:YAG sample in continuous-wave laser-diode pumping. The effect of pump power on the laser emission spectrum of both wavelengths is addressed. The near-diffraction-limited beam quality for different laser cavities was achieved. The excellent laser performance indicates that TGT-grown Yb:YAG crystals have very good optical quality and can be potentially used in high-power solid-state lasers.
Resumo:
Two different kinds of 1064 nm high-reflective (HR) coatings, with and without SiO2 protective layer, were prepared by electron beam evaporation. Three-dimensional damage morphology, caused by a Nd:YAG pulsed laser, was investigated for these HR coatings. Development of laser-induced damage on HR coatings was revealed by both temperature field calculation and discrete meso-element simulation. Theoretical results met experimental very well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.
Resumo:
A LIBS setup was built in the Institute of Modern Physics. In our experiments, LIBS spectra produced by infrared radiation of Nd : YAG nanosecond laser with 100 and 150 mJ pulse energy, respectively, were measured by fiber optic spectrometer in the ranges of 230-430 run and 430-1080 nm with a delay time of 1.7 and gate width of 2 ms for potato and lily samples prepared by vacuum freeze-dried technique. The lines from different metal elements such as K, Ca, Na, Mg, Fe, Al, Mn and Ti, and nonmetal elements such as C, N, O and H, and some molecular spectra from C-2, CaO, and CN were identified according to their wavelengths. The relative content of the six microelements, Ca, Na, K, Fe, Al, and Mg in the samples were analyzed according to their representative line intensities. By comparison we found that there are higher relative content of Ca and Na in lily samples and higher relative content of Mg in potato samples. The experimental results showed that LIBS technique is a fast and effective means for measuring and comparing the contents of microelements in plant samples.
Resumo:
Raman induced phase conjugation (RIPC) spectroscopy is a relatively new coherent Raman spectroscopic (CRS) technique using optical phase conjugation (OPC), with which complete Raman spectra of transparent media can be obtained. It is a non-degenerate four-wave mixing technique in which two pulsed laser beams at Ω1 and Ω1 ± Δ where A corresponds to a vibrational frequency of a nonlinear medium mix with a third laser beam at Ω1 to generate a fourth beam Ω1 ± Δ, which is nearly phase conjugate to one of the beams at Ω1. With this technique one can measure the ratio of the resonant and nonresonant components of the third-order nonlinear susceptibilities of the nonlinear media. We have used this technique to get Raman spectra of well-known organic solvents like benzene etc., using pulsed Nd: YAG -dye laser systems. We have also studied the effect of delaying one of the interacting beams with respect to the others and the phase conjugate property of RIPC signals.
Resumo:
A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02
Resumo:
研究了两种新型芴类衍生物9,9-二(2-乙基已基)-2,7-二咔唑-9H-芴(简记为DCZF)和9,9-二(2-乙基已基)-2,7-二(2-(4-甲氧基)苯-2,1-乙烯基)芴(简记为BMOSF)在N,N-二甲基甲酰胺(DMF)中的线性吸收和单光子荧光行为,并用脉冲宽度为38ps,重复频率为10Hz的1064 nm Nd:YAG脉冲激光研究了两种化合物的三光子吸收性质.结果表明:两种新材料的最大线性吸收峰分别位于330和380nm,吸收区域覆盖了270-420nm波段.两种化合物的荧光带位于蓝-紫区,中心
Resumo:
报道了千瓦级激光二极管面阵抽运固体热容激光器的理论与实验研究, 分别采用Nd:YAG单板条和双板条串接的热容激光器, 利用热容激光器的理论计算模型计算了在一定的工作时间内激光输出特性, 并进行了实验验证。实验中采用的晶体尺寸均为59 mm×40 mm×4.5 mm, 对单板条进行抽运时平均功率大约为5.6 kW, 双板条串接时为11.2 kW, 重复频率为1 kHz, 占空比为20%。实验中观察了1 s的工作时间内脉冲能量输出的波动情况, 单板条时单脉冲能量输出最大为1.3 J, 在1 s后单脉冲能量输出
Resumo:
We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd: YAG pulsed laser. The devices show a laser threshold as low as 7 nJ/pulse.
Resumo:
利用激光诱导击穿光谱定量分析了铝合金中多种元素的成分。采用Nd∶YAG脉冲激光器,在空气环境下烧蚀铝合金固体样品获得等离子体。利用多通道光栅光谱仪和CCD检测器对200~980nm波长范围的光谱进行同时检测。研究了检测时延、激光脉冲能量、元素深度分布对光谱强度的影响,考虑这些因素之后对实验参数进行了优化。在优化的实验参数下对国家标准铝合金样品中的八种元素Si,Fe,Cu,Mn,Mg,Zn,Sn及Ni进行了定标,并利用定标曲线对一种铝合金样品进行了定量分析。实验结果表明,测量结果的相对标准偏差(RSD)最大为5.89%,相对误差在-20.99%~15%范围内,说明对铝合金样品成分进行定量分析,激光诱导击穿光谱是一种有效的光谱分析工具,但是分析结果的准确度仍需要提高。
Resumo:
We study the generation of supercontinua in air-silica microstructured fibers by both nanosecond and femtosecond pulse excitation. In the nanosecond experiments, a 300-nm broadband visible continuum was generated in a 1.8-m length of fiber pumped at 532 nm by 0.8-ns pulses from a frequency-doubled passively Q-switched Nd:YAG microchip laser. At this wavelength, the dominant mode excited under the conditions of continuum generation is the LP 11 mode, and, with nanosecond pumping, self-phase modulation is negligible and the continuum generation is dominated by the interplay of Raman and parametric effects. The spectral extent of the continuum is well explained by calculations of the parametric gain curves for four-wave mixing about the zero-dispersion wavelength of the LP11 mode. In the femtosecond experiments, an 800-nm broad-band visible and near-infrared continuum has been generated in a 1-m length of fiber pumped at 780 nm by 100-fs pulses from a Kerr-lens model-locked Ti:sapphire laser. At this wavelength, excitation and continuum generation occur in the LP01 mode, and the spectral width of the observed continuum is shown to be consistent with the phase-matching bandwidth for parametric processes calculated for this fiber mode. In addition, numerical simulations based on an extended nonlinear Schrödinger equation were used to model supercontinuum generation in the femtosecond regime, with the simulation results reproducing the major features of the experimentally observed spectrum. © 2002 Optical Society of America.