998 resultados para Y zeolite
Resumo:
Thermoluminescence (TL) of CdS clusters encapsulated in zeolite-Y is reported for the first time. The TL of the clusters is much stronger than that of the bulk CdS and increases as the CdS loading decreases. This inverse dependence of TL intensity upon CdS loading is caused mainly by the size-effect of the clusters. All samples exhibit almost the same glow peak position and shape, indicating that traps or surface states are not sensitive to the cluster sizes.
Resumo:
The excitation spectrum of CdS dusters in zeolite-Y is consistent with their absorption spectrum, both showing two absorption bands that are assigned to the Is-is and Is-lp transitions, respectively. A new emission at 400 nn is considered to be the recombination of the bounded excitons. The emission firstly increases then decreases with increasing cluster size or loading. The emission by excitation into the Is-is band is stronger and sharper than that by excitation into the Is-lp band. This phenomenon is attributed to the size inhomogeneity and the strong electron-phonon interaction of the dusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
CdS clusters in zeolite-Y have been prepared by the exchange of Cd2+ into the zeolite following by sulfurization with Na2S in solution. Blue-shifts from the bulk caused by quantum size effect and the change of absorption upon CdS loading are observed. Two absorption bands are detected for one of the sample and are assigned to the 1s-1s band and exciton transition, respectively. The exciton feature is more pronounced in the excitation spectrum than in the absorption spectrum, and the luminescence excited at the exciton band is stronger than that at the 1s-1s band. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
PbS clusters in zeolite-Y have been prepared with the reaction of Pb2+-ion-exchanged zeolite-Y with Na2S in solution at room temperature. Their absorption spectra show dramatic blue shifts from that of the bulk PbS. Obvious change of both the absorption edges and peak positions upon PbS concentrations have been observed. These phenomena provide evidences that PbS clusters have been formed within the zeolite. The absorption spectra show featureless structure and have no tails near the absorption edges. As the PbS loading density becomes higher, the absorption bands become stronger and sharpen. Order PbS clusters lattice with high quality might be formed in the supercages of zeolite-Y. (C) 1996 American Institute of Physics.
Resumo:
Ultrafine zeolite Y crystals (ca. 100-200 nm) have been successfully grown on metakaolin microspheres (< 100 mu m) for which good hydrothermal stability was observed; products were characterized by powder X-ray diffraction, scanning electronic microscopy and transmission electronic microscopy.
Resumo:
In this regard Schiff base complexes have attracted wide attention. Furthermore, such complexes are found to play important role in analytical chemistry, organic synthesis, metallurgy, refining of metals, electroplating and photography. Many Schiff base complexes are reported in literature. Their properties depend on the nature of the metal ion as well as on the nature of the ligand. By altering the ligands it is possible to obtain desired electronic environment around the metal ion. Thus there is a continuing interest in the synthesis of simple and zeolite encapsulated Schiff base complexes of metal ions. Zeolites have a number of striking structural similarities to the protein portion of natural enzymes. Zeolite based catalysts are known for their remarkable ability of mimicking the chemistry of biological systems. In view of the importance of catalysts in all the areas of modern chemical industries, an effort has been made to synthesize some simple Schiff base complexes, heterogenize them by encapsulating within the supercages of zeoliteY cavities and to study their applications. The thesis deals with studies on the synthesis and characterization of some simple and zeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes and on the catalytic activity of these complexes on some oxidation reactions. Simple complexes were prepared from the Schiff base ligands SBT derived from 2-aminobenzothiazole and salicylaldehyde and the ligand VBT derived from 2-aminobenzothiazole and vanillin (4-hydroxy-3- methoxybenzaldehyde). ZeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands SBT and VBT and also of 2-aminobenzothiazole were synthesized. All the prepared complexes were characterized using the physico-chemical techniques such as chemical analysis (employing AAS and CHN analyses), magnetic moment studies, conductance measurements and electronic and FTIR spectra. EPR spectra of the Cu(II) complexes were also carried out to know the probable structures and nature of Cu(II) complexes. Thermogravimetric analyses were carried out to obtain the information regarding the thermal stability of various complexes. The successful encapsulations of the complexes within the cavities of zeoliteY were ascertained by XRD, surface area and pore volume analysis. Assignments of geometries of simple and zeoliteY encapsulated complexes are given in all the cases. Both simple and zeoliteY encapsulated complexes were screened for catalytic activity towards oxidation reactions such as decomposition of hydrogen peroxide, oxidation of benzaldehyde, benzyl alcohol, 1-propanol, 2-propanol and cyclohexanol.
Resumo:
Copper(II) complexes of two biologically important ligands, viz., embelin (2,5-dihydroxy-3-undecyl-2,5-cyclohexadien 1,4-dione) and 2-aminobenzimidazole were entrapped in the cages of zeolite Y by the flexible ligand method. The capability of these compounds in catalyzing the reduction of oxygen (industrially known as deoxo reaction) was explored and the results indicate an enhancement of the catalytic properties from that of the simple copper ion exchanged zeolite. These point to the ability of the ligands in enhancing the oxygen binding capability of the metal ion. Elemental analyses, Fourier transform infrared (FTIR), diffuse reflectance and EPR spectral studies, magnetic susceptibility measurements, TG, surface area analyses and powder X-ray diffraction studies were used in understanding the presence, composition and structure of the complexes inside the cages. The study also reveals the increased thermal and mechanical stability of the complexes as a result of encapsulation.
Resumo:
The acidity of the various rare-earth exchanged zeolite-Y catalysts has been examined by titration method using Hammett indicators and is correlated with the catalytic activity of the samples in the benzylation of 0-xylene.
Resumo:
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.
Resumo:
Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenyleylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum similar to10% ee).