927 resultados para X-rays: individual (SGR J1745–2900)
Resumo:
Particle and photon polarization phenomena occurring in collisions of relativistic ions with matter have recently attracted particular interest. Investiga- tions of the emitted characteristic x-ray and radiative electron capture radiation has been found to be a versatile tool for probing our present understanding of the dynamics of particles in extreme electromagnetic ¯elds. Owing to the progress in x-ray detector technology, in addition, accurate measurements of the linear po- larization for hard x-ray photons as well as the determination of the polarization plane became possible. This new diagnostic tool enables one today to derive in- formation about the polarization of the ion beams from the photon polarization features of the radiative electron capture process.
Resumo:
Purpose: To determine the yields of cell lethality and micronucleus formation measured immediately after irradiation or at delayed times in primary human fibroblasts exposed to X-rays or alpha-particles.
Resumo:
Purpose: To determine whether the non-random distributions of DNA double-strand breaks in cells observed after alpha-particle irradiation are related to the higher-order structure of the chromatin within the nucleus.
Resumo:
Objective: The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage (MV) X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, incorporation of this dose at the planning stage of treatment has been suggested.
Methods: The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay, irradiating DU-145 prostate cancer, H460 non-small cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 minutes and 15 minutes were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model.
Results: For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact upon cell survival. These findings were in close agreement with the theoretical results.
Conclusions: For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy.
Advances in Knowledge: There is a paucity of data in the literature on imaging effects in radiotherapy. This paper presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.
Resumo:
We describe experiments designed to produce a bright M-L band x-ray source in the 3-3.5 keV region. Palladium targets irradiated with a 10(15) W cm(-2) laser pulse have previously been shown to convert up to similar to 2% of the laser energy into M-L band x-rays with similar pulse duration to that of the incident laser. This x-ray emission is further characterized here, including pulse duration and source size measurements, and a higher conversion efficiency than previously achieved is demonstrated (similar to 4%) using more energetic and longer duration laser pulses (200 ps). The emission near the aluminium K-edge (1.465-1.550 keV) is also reported for similar conditions, along with the successful suppression of such lower band x-rays using a CH coating on the rear side of the target. The possibility of using the source to radiatively heat a thin aluminium foil sample to uniform warm dense matter conditions is discussed.