988 resultados para X-ray laser, plasma physics, PHELIX laser
Resumo:
Multipulse irradiation with 100 ps pulses of stripe Germanium targets is shown to enhance by up to several orders-of-magnitude the output of Ne-like Ge lasing on the J = 0-1 line at 196 Angstrom compared to single pulse pumping. Various pre-pulse and multipulse configurations have been experimentally investigated for irradiances of approximate to 4 x 10(13) W/cm(2) with a 1.06 mu m wavelength pumping laser. The ionisation balance measured by a KeV crystal spectrometer (KAP crystal) has been found to not affect the X-ray laser output. Good agreement between the experimental results and a fluid code incorporating atomic physics, gain and X-ray beam ray tracing is obtained. The code results show that the enhanced X-ray laser output is produced by multipulse irradiation reducing the electron density gradients in the gain region and simultaneously increasing the gain region spatial size. These changes reduce the effect of refraction on the X-ray laser beam propagation.
Resumo:
Through the use of time-integrated space-resolved keV spectroscopy, we investigate line plasmas showing gain in Ne-like nickel, copper, and zinc for irradiation using the prepulse technique. The experiments were conducted at 1.06 mu m with the prepulse to main pulse intensity contrast ranging from 10(-6) to 10(-2). The effect of the prepulses on the plasma conditions is inferred through spectroscopic line ratio diagnostics for the electron temperature, the Ne-like ground-state density, and the lateral size of the Ne-like region. It is observed that neither the value of the electronic temperature nor its spatially resolved profile along the linear focus axis varies significantly with the prepulse level, contrary to the lateral width and the density of the Ne-like region in the plasma, which are seen to increase. These results explain, at least in part, why prepulsed x-ray lasers show such high gain and brightness.
Resumo:
Through the use of time-integrated space-resolved keV spectroscopy, we characterize line plasmas showing gain in Ne-like Zn with prepulsed irradiation to explain the enhanced performances of x-ray lasers using the prepulse technique. It is observed that the value of the electron temperature does not vary significantly with prepulse level, nor does its spatially resolved profile along the line. The lateral width and density of the Ne-like region in the plasma are seen to increase with the prepulse level. (C) 1995 Optical Society of America
Resumo:
Lasing properties of a collisional-excitation Ne-like Ge soft-x-ray laser have been studied with exploding-foil, single-slab, and double-slab targets under identical pumping conditions. Experimental results for the angular intensity distributions and the temporal variations of the lasing intensities are examined with a hydrodynamic code and ray-trace calculations. The observed angular distribution are well reproduced by these analyses, and it is found that the effective gain regions are located on the high-density side of the expected gain regions. It is shown that the observed lasing intensity of the J = 0 to J = 1 line is strongly correlated with the temporal change of the calculated electron temperature for both the slab and the exploding-foil targets.
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.
Resumo:
From measurements of spatial coherence and beam divergence of Ge soft x-ray laser at a far field, the x-ray laser beam has been characterized as a partially coherent Gaussian beam. Double-pass amplification will improve spatial and temporal coherence, spectral brightness and efficiency. Close to 100% geometrical coupling efficiency has been obtained in double pass amplification in Ge. Transient loss of feedback is attributed to mirror structure damage within the build-up time of the x-ray laser. Prospect for generation of coherent x-ray laser beam is discussed.
Resumo:
The photo-pump strengths of both the ((3 (d) over bar(4))(0)(3d(6))(0))(0)-(((3 (d) over bar(3))(3/2)(3d(6))(0))(3/2)(5 (f) over bar)(5/2))(1) and the ((3 (d) over bar(4))(0)(3d(6))0)0-(((3 (d) over bar(4))(0)(3d(5))(5/2))(5/2)(5f)(7/2))(1) transitions in Ni-like Sm34+ have been measured to be 2.0 x 10(-4) and 2.4 x 10(-4) photons/mode respectively. The implications of the measurement are briefly discussed in a comparison of the merits of automatically line matched photo-pump scheme to those of the collisional excitation Ni-like Sm+34 scheme.
Resumo:
An imaging microscope, comprising a Schwarzchild condenser and zone plate optical arrangement, has been established on the Vulcan Nd-glass laser system at the Rutherford Appleton Laboratory (RAL). Images of simple test structures have been taken in X-ray transmission using doublet X-ray laser radiation at 23.2 nm and 23.6 nm from collisionally pumped Ne-like germanium. Image resolution of about 0.15 mum has been measured.
Resumo:
We describe the properties of the exploding foil neon-like germanium soft X-ray lasers having wavelengths of 19-28 nm and gain length product of more than 10. The measured X-ray intensity of lasing lines from an exploding foil target has been explained with the results of the plasma hydrodynamic code from the viewpoint of suitable condition of electron density and temperature for creating population inversion.
Resumo:
The XUV lasing output from one germanium slab target has been efficiently coupled into, and further amplified in, a second plasma produced by irradiation of a similar target from the opposite direction. The operation of such a double target was shown to be strongly dependent on the distance by which the two target surfaces were displaced. The line brightness peaked for a surface displacement of approximately 200-mu-m and it was observed that the pointing direction of one output beam could be controlled by the surface separation in an asymmetric geometry. Gain length products of approximately 16 with estimated output powers close to the megawatt level were achieved on both the 23.2 and 23.6 nm J=2-1 transitions for an optimised target configuration. Maximum effective coupling efficiencies of the individual outputs from double targets, comprising 2.2 and 1.4 cm length components, approached 100% for beams propagating from the shorter to the longer target.
Resumo:
The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.
Resumo:
We present what we believe is a novel technique based on the moire effect for fully diagnosing the beam quality of an x-ray laser. Using Fresnel diffraction theory, we investigated the intensity profile of the moire pattern when a general paraxial beam illuminates a pair of Ronchi gratings in the quasi-far field. Two formulas were derived to determine the beam quality factor M-2 and the effective radius of curvature R-e from the moire pattern. On the basis of the results, the far-field divergence, the waist location, and the radius can be calculated further. Finally, we verified the approach by use of numerical simulation. (C) 1999 Optical Society of America [S0740-3232(99)01502-1].