992 resultados para X-RAY SCATTERING DATA ANALYSIS
Resumo:
A novel capillary flow device has been developed and applied to study the orientation of worm-like micelles, among other systems. Small-angle X-ray scattering (SAXS) data from micelles formed by a Pluronic block copolymer in aqueous salt solution provides evidence for the formation of worm-like micelles, which align under flow. A transition from a rod-like form factor to a less persistent conformation is observed under flow. Flow alignment of worm-like micelles formed by the low molar mass amphiphile system cetyl pyridinium chloride+sodium salicylate is studied for comparative purposes. Here, inhomogenous flow at the micron scale is revealed by streaks in the small-angle light scattering pattern perpendicular to the flow direction. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Analysis of X-ray powder data for the melt-crystallisable aromatic poly(thioether thioether ketone) [-S-Ar-S-Ar-CO-Ar](n), ('PTTK', Ar= 1,4-phenylene), reveals that it adopts a crystal structure very different from that established for its ether-analogue PEEK. Molecular modelling and diffraction-simulation studies of PTTK show that the structure of this polymer is analogous to that of melt-crystallised poly(thioetherketone) [-SAr-CO-Ar](n) in which the carbonyl linkages in symmetry-related chains are aligned anti-parallel to one another. and that these bridging units are crystallographically interchangeable. The final model for the crystal structure of PTTK is thus disordered, in the monoclinic space group 121a (two chains per unit cell), with cell dimensions a = 7.83, b = 6.06, c = 10.35 angstrom, beta = 93.47 degrees. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.
Resumo:
A procedure is presented for obtaining full molecular orientation information from wide angle X-ray scattering patterns of deformed non-crystalline polymers. The method is based on the analysis of experimental and calculated scattering patterns into their spherical harmonics. The results obtained for PMMA are compared with values predicted by the pseudo affine and affine deformation schemes.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Docking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP). This enzyme catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for PNP causes gradual decrease in T-cell immunity. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant rejection, rheumatoid arthritis, lupus, and T-cell lymphomas. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. The present analysis confirms the trimeric structure observed in the crystal. The potential application of the present procedure to other systems is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 degrees C/min from -120 degrees C up to 30 degrees C. Aerogels were obtained by CO(2) supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 degrees C up to practically 0 degrees C, was associated to the melting of ice nanocrystals with a crystal size distribution with pore diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 degrees C, was attributed to the melting of macroscopic crystals. The DSC incremental nanopore volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20 +/- 0.01 in a characteristic length scale below xi=7.9 +/- 0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental pore volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.
Resumo:
Powder X-ray diffraction data for a new palladium(II) amino acid complex, of composition PdC12H2ON2O4S2, are presented in this paper. Orthorhombic cell parameters are: a = 10.740 angstrom, b = 19.999 angstrom, and c = 5.2470 angstrom. (c) 2004 International Centre for Diffraction Data.
Resumo:
Powder X-ray diffraction data for methionine sulfoxide, C5H11NO3S, obtained from the commercial amino acid, are presented in this work. Monoclinic cell parameters are: a = 15.500 Angstrom; b = 3.820 Angstrom; c = 13.490 Angstrom; 8=97.300 degrees. (C) 2001 International Centre for Diffraction Data.
Resumo:
Powder X-ray diffraction (XRD) data were collected for La0.65Sr0.35MnO3 prepared through an alternative method from a stoichiometric mixture of Mn2O3, La2O3, and SrO2, fired at 1300 degreesC for 16 h. XRD analysis using the Rietveld method was carried out and it was found that manganite has rhombohedral symmetry (space group R(3) over bar c). The lattice parameters are found to be a=5.5032 Angstrom and c=13.3674 Angstrom. The bond valence computation indicates that the initial inclusion of Sr occurs at higher temperature. (C) 2002 International Centre for Diffraction Data.
Resumo:
The local and medium-range structures of siloxane-POE hybrids doped with Fe(III) ions and prepared by the sol-gel process were investigated by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) and small-angle X-ray scattering (SAXS), respectively. The experimental results show that the structure of these composites depends on the doping level. EXAFS data reveal that, for low doping levels ([O]/[Fe] > 40, oxygens being of the ether-type of the POE chains), Fe(III) ions are surrounded essentially by a shell of chlorine atoms, suggesting the formation of FeCl4- anions. At high doping levels ([O]/[Fe] < 20), Fe(III) ions interacts mainly with oxygen atoms and form FeOx species. The relative proportion of FeOx species increases with iron concentration, this result being consistent with the results of SAXS measurements showing that increasing iron doping induces the formation of iron-rich nanodomains embedded in the polymer matrix.
Resumo:
Synchrotron X-ray powder diffraction (XRPD) data were collected for the silver(I)-aspartame complex [Ag(C14H17N2O5)]center dot 1/2 H2O. The complex was obtained from a stoichiometric mixture of aspartame (3-amino-N-(alpha-carboxyphenethyl)-succinamic acid N-methyl ester, C14H18N2O5), Na2CO3, and AgNO3. Indexing using Crysfire and Chekcell proposed an orthorhombic unit cell with space group P222(1). The lattice parameters are a = 12.4750(1) angstrom, b = 21.60614(14) angstrom, and c = 4.88888(9) angstrom. (C) 2006 International Centre for Diffraction Data.