934 resultados para X ray absorption fine structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is mainly focused on the pre-edge analysis of XAS spectra of Ti HCF sample hexacyanocobaltate and hexacyanoferrate samples doped on a Indium Tin Oxide (ITO) thin film. The work is aimed at the determination of Ti oxidation state, as well as indication of various coordination number in the studied samples. The experiment have been conducted using XAFS (X-ray absorption fine structure)beamline at Elettra synchrotron, Trieste (Italy) under supervision of Professor Marco Giorgetti, Department of Industrial Chemistry, University of Bologna. The Master thesis accreditation to fullfill the ASC Master of Advanced Spectroscopy in Chemistry Degree requirement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa_(2)Cu_(3)O_(7) (YBCO) and the ferromagnet La_(2/3)Ca_(1/3)MnO_(3) (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO_(2) planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3d_(3z^(2)−r^(2)) orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury scrubbing from gas streams using a supported 1-butyl-3-methylimidazolium chlorocuprate(II) ionic liquid ([C4mim]2[Cu2Cl6]) has been studied using operando EXAFS. Initial oxidative capture as [HgCl3]– anions was confirmed, this was then followed by the unanticipated generation of mercury(I) chloride through comproportionation with additional mercury from the gas stream. Combining these two mechanisms leads to net one electron oxidative extraction of mercury from the gas with increased potential capacity and efficiency for supported ionic liquid mercury scrubbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline samples of Ba1-xCaxF2 prepared by high-energy milling show an unusually high F-ion conductivity, which exhibit a maximum in the magnitude and a minimum in the activation energy at x = 0.5. Here, we report an X-ray absorption spectroscopy (XAS) at the Ca and Sr K edges and the Ba L-3 edge and a molecular dynamics (MD) simulation study of the pure and mixed fluorides. The XAS measurements on the pure binary fluorides, CaF2, SrF2 and BaF2 show that high-energy ball-milling produces very little amorphous material, in contrast to the results for ball milled oxides. XAS measurements of Ba1-xCaxF2 reveal that for 0 < x < 1 there is considerable disorder in the local environments of the cations which is highest for x = 0.5. Hence the maximum in the conductivity corresponds to the composition with the maximum level of local disorder. The MD calculations also show a highly disordered structure consistent with the XAS results and similarly showing maximum disorder at x = 0.5.