991 resultados para Word Classification
Resumo:
We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs.
Resumo:
In this paper, we describe one of the approaches of the participation of Universidade de Évora. Our approach is similar to usual methods where text is preprocessed, features are extracted, and then used in SVMs with cross validation. The main difference is that features used come from averages of word embeddings, specifically word2vec vectors. Using PAN 2016 dataset, we were able to achieve 44.8% and 68.2% for English age and gender classification respectively. We were also able to achieve 51.3% and 67.1% accuracy for Spanish age and gender classification. Finally, we report 71.9% accuracy for Dutch age classification.