993 resultados para Wool fabrics - Research


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Through a series of experimental analysis of temperature and pH value on the expansion of wool fiber and wool fabrics size change. In the pH2.1 solution, the wool fabric size declines with increasing temperature, changing the magnitude depends on the fabric and fabric shape rate. isoelectric point of pH4.8 in the wool, the fibers expand to reach the minimum, while the size of the fabric, along with the solution acidity increases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wool fabrics are often treated under conditions of varying pH in dyeing and finishing processes. It is known that in air the dimensions of wool fabrics change with the amount of fiber swelling at different regain. In this work, it has been shown that a similar relationship between fiber swelling and fabric dimensions existed in water at different pH values. The diameters of Merino and Corriedale wool fibers in water at different pH values were measured with an OFDA 2000 fiber diameter analyzer, fitted with a specially constructed accessory liquid cell. The results showed that the mean diameters of swollen wool fibers in water varied with pH. Minimum swelling was obtained in the range pH 5-7. It was found that the dimensions of wool fabric in water were dependent on the pH. The changes in fiber diameter in water could be attributed to changes in ionic interactions between charged acid and basic groups in wool protein with variations in pH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study addresses a major issue facing the wool industry - the formation of entangled fibres or pills on wool knitwear. By examining the factors that contribute to the inconsistent pilling results, ways of improving the test procedures have been identified. This will have practical implications for the textile industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis investigates the possibility of producing photochromic wool fabrics using a silica sol-gel coating method. Silicas made from sol-gel methods are uniquely suited to host photochromic dyes for developing colour-changing wool. The achieved photochromic effects have opened a new product area for fashion effects on wool textiles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research developed non-hazardous methods for coating wool with conductive polymers for thermal and anti-static clothing. Conductive polymers are black in colour, thus the synthesis of new conductive polymers was required to produce coloured or fluorescent conductive textile. Cross-linked conductive polymers were also synthesised to increase their durability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, hybrid silica prepared by a sol-gel technique and doped with a photochromic dye was used to produce photochromic coatings on fabric surfaces. The coated fabrics showed a strong photochromic effect with very fast optical response speed. Good coating adhesion was obtained on wool fabrics. The photostability of the photochromic fabrics was improved by three different processes: adding a photo stabilizer, adjusting the surface wettability and sealing off the dye-containing pores with additional silica coating. Four UV stabilizers were added separately to the photochromic silica coatings to investigate their influence on the photostability and photochromic behaviour. The addition of UV stabilizers retarded the photochromic response and reduced photochromic absorption, but increased photochromic lifetime. Among the four UV stabilizers studied, the quencher resulted in the best improvement to the photostability with minimal reduction in the photochromic absorption. Increasing the hydrophobicity of the coating, and sealing-off the dye-containing pores were also found to improve photostability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of photochromism in textiles has potential to create new opportunities to develop fancy colour-changing effects in fashionable textiles, as well as smart garments capable of protecting wearers from the effects of UV irradiation and responding to environmental changes. This book presents a coating method for achieving quick and obvious photochromic effects on wool fabrics using conventional photochromic dyes and hybrid silicas. It covers details about fabricating different types of photochromic dye-silica coatings, measuring their optical performance, assessing some physical characterisations of the coatings, and measuring the effects of the coatings on fabric performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soluble conducting alkyl polypyrrole polymers have been applied by either chemical polymerization of the 3-alkyl monomers or direct application of polymer emulsion to the surface. Solution, vapor and spray polymerization methods of coating poly(3-alkylpyrroles) to the surface of woven wool fabrics are explored. Conductive textile samples have also been prepared by applying emulsions of soluble prepolymerized 3-alkylpyrrole to the fabric surface. Direct applications of a conductive paint to the textile surface eliminate the exposure of the substrate to damaging oxidizing agents which allow the coating of more sensitive and delicate substrates. All textiles produced are tested for abrasion resistance and conductivity. For alkyl polypyrrole coated fabrics, the optimum carbon chain lengths are between n=10 and n=14, which result in optimum values of conductivity and solubility. The darkness of the tone is inversely related to the surface resistivity of the resulting conductive fabric. Therefore, deep black coatings have low resistivity whereas light gray coatings on a white fabric surface have higher surface resistivity. Longer alkyl chains result in higher surface resistivity in fabrics. The conductive coating of poly(3-decanylpyrrole) on the textile surface has a better abrasion resistance compared to that of an unsubstituted polypyrrole coating.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wool fabrics, ultrasonically treated in various chemical conditions and for different time durations, were analysed for thermal properties by thermo-gravimetric analysis and differential scanning calorimeter, in comparison with the untreated fabric. Fabric mechanical properties, such as bending and tensile performance, and changes in fibre morphology were also evaluated before and after ultrasonic treatment.It is found that wool treated with ultrasonics at the appropriate time, has less mass loss and a higher thermal degradation temperature than that without ultrasonic treatment or with prolonged ultrasonic treatment. Resistance to thermal degradation is reduced when wool is ultrasonically treated in the presence of alkali. Differential scanning calorimeter analysis shows that while ultrasonic treatment has little effect on fibre crystallinity, an appropriate treatment can provide wool with increased water absorption. Ultrasonic treatment stiffens wool fabric to some extent when the treatment time is prolonged. The addition of detergent alone to the ultrasonic bath has little effect on fabric tensile behaviour, whereas a treatment with both detergent and alkali produces severe fibre damage and significant loss of fabric tensile strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fabrics made from natural fibers, such as wool and cotton, are susceptible to attacks from micro-organisms, which may damage the fabrics and harm the human body. Antimicrobial finishing of natural textile products may involve harmful and non-environmentally friendly chemicals. In this study, a natural antibacterial agent, capsaicin, was coated on the surface of wool fabrics by a sol-gel process. The antibacterial properties of coated fabrics were evaluated against test bacteria Escherichia coli according to the American Association of Textile Chemists and Colorists (AATCC) method and standard American Society for Testing and Materials (ASTM) E2149-01. Compared with the control group (sol-gel coated fabric without capsaicin), the capsaicin-coated fabric inhibited bacterial growth markedly after 24 hours incubation at 37°C. The antibacterial efficiency after laundry washes was also investigated. Good durability to washing of capsaicin on fabric was achieved by the sol-gel coating technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wool fabrics, ultrasonically treated for different time durations, were analysed by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC), and thermo-gravimetric analysis (TGA), in comparison with the wool without ultrasonic treatment. Fabric tensile and thermal properties were measured in addition to the fibre micro structure analysis. Wool protein chains in the macro fibrils were shown to be rearranged to a more regular and less flexible structure, as a result of the ultrasonically treated fabric. Prolonged ultrasonic treatment, however, significantly reduced both fabric tenacity and extensibility. Wool treated with ultrasonics was found to have less mass loss and a higher thermal degradation temperature than that of without ultrasonic treatment and prolonged treated. DSC analysis showed that while ultrasonic treatment has little effect on the fibre crystallinity, an appropriate treatment can provide wool with increased water absorption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, the antifelting and antibacterial features of wool samples treated with nanoparticles of titanium dioxide (TiO2) were evaluated. To examine the antifelting properties of the treated samples, the fabric shrinkage after washing was determined. The antimicrobial activity was assessed through the calculation of bacterial reduction against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. TiO 2 was stabilized on the wool fabric surface by means of carboxylic acids, including citric acid (CA) and butane tetracarboxylic acid (BTCA). Both oxidized samples with potassium permanganate and nonoxidized wool fabrics were used in this study. The relations between both the TiO2 and carboxylic acid concentrations in the impregnated bath and the antifelting and antibacterial properties are discussed. With increasing concentration in the impregnated bath, the amount of TiO2 nanoparticles on the surface of the wool increased; subsequently, lower shrinkage and higher antibacterial properties were obtained. The existence of TiO2 nanoparticles on the surface of the treated samples was proven with scanning electron microscopy images and energy-dispersive spectrometry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study an effective nanocomposite antimicrobial agent for wool fabric was introduced. The silver loaded nano TiO(2) as a nanocomposite was prepared through UV irradiation in an ultrasonic bath. The nanocomposite was stabilized on the wool fabric surface by using citric acid as a friendly cross-linking agent. The treated wool fabrics indicated an antimicrobial activity against both Staphylococcus aureus and Escherichia coli bacteria. Increasing the concentration of Ag/TiO(2) nanocomposite led to an improvement in antibacterial activities of the treated fabrics. Also increasing the amount of citric acid improved the adsorption of Ag/TiO(2) on the wool fabric surface leading to enhance antibacterial activity. The EDS spectrum, SEM images, and XRD patterns was studied to confirm the presence of existence of nanocomposite on the fabric surface. The role of both cross-linking agent and nanocomposite concentrations on the results was investigated using response surface methodology (RSM).