964 resultados para Wet chemical etching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progress in microsystem technology or nano technology places extended requirements to the fabrication processes. The trend is moving towards structuring within the nanometer scale on the one hand, and towards fabrication of structures with high aspect ratio (ratio of vertical vs. lateral dimensions) and large depths in the 100 µm scale on the other hand. Current procedures for the microstructuring of silicon are wet chemical etching and dry or plasma etching. A modern plasma etching technique for the structuring of silicon is the so-called "gas chopping" etching technique (also called "time-multiplexed etching"). In this etching technique, passivation cycles, which prevent lateral underetching of sidewalls, and etching cycles, which etch preferably in the vertical direction because of the sidewall passivation, are constantly alternated during the complete etching process. To do this, a CHF3/CH4 plasma, which generates CF monomeres is employed during the passivation cycle, and a SF6/Ar, which generates fluorine radicals and ions plasma is employed during the etching cycle. Depending on the requirements on the etched profile, the durations of the individual passivation and etching cycles are in the range of a few seconds up to several minutes. The profiles achieved with this etching process crucially depend on the flow of reactants, i.e. CF monomeres during the passivation cycle, and ions and fluorine radicals during the etching cycle, to the bottom of the profile, especially for profiles with high aspect ratio. With regard to the predictability of the etching processes, knowledge of the fundamental effects taking place during a gas chopping etching process, and their impact onto the resulting profile is required. For this purpose in the context of this work, a model for the description of the profile evolution of such etching processes is proposed, which considers the reactions (etching or deposition) at the sample surface on a phenomenological basis. Furthermore, the reactant transport inside the etching trench is modelled, based on angular distribution functions and on absorption probabilities at the sidewalls and bottom of the trench. A comparison of the simulated profiles with corresponding experimental profiles reveals that the proposed model reproduces the experimental profiles, if the angular distribution functions and absorption probabilities employed in the model is in agreement with data found in the literature. Therefor the model developed in the context of this work is an adequate description of the effects taking place during a gas chopping plasma etching process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an alpha-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 degrees C. A 10 at.% of doping of Sn4+ ions into an In2O3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10(-3) Omega cm, 2.9 cm(2)/V s and -3.5 x 10(20)/cm(3), respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanosized and highly reactive magnesium mobate (MgNb2O6) powders were successfully synthesized by a new wet-chemical method by means of the dissolution of Nb2O5 center dot 5H(2)O and in a solution of oxalic acid followed by the addition of stoichiometric amounts of magnesium carbonate. The Nb-Mg-oxalic acid solution was evaporated resulting in a dry and amorphous powder that was calcined in the temperature range from 200 to 900 degrees C for 2 h. The crystallization process from the amorphous state to the crystalline MgNb2O6 was followed by thermal analysis. The calcined powders characterized by FT-Raman spectroscopy, X-ray diffraction (XRD) and their morphology examined by high resolution scanning electron microscopy (HR-SEM). Pure MgNb2O6, free from the second phases and obtained at 800 degrees C was confirmed by a combined analysis using XRD and FT-Raman. The average diameter of the particles was calculated from the HR-SEM image as 70 urn approximately. This technique allows a better mixing of the constituent elements and thus a better reactivity of the mixture to obtain pre-reaction products with high purity at lower temperatures and reducing cost. It can offer a great advantage in the PMN-PT formation with respect to the solid-state synthesis. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues. In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the microcharacteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels. This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwaveassisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO4 and Fe3(PO4)2•8H2O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure. The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano- scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanocomposites of general layered clays and metal sulfides could be produced from reactions of the layered clay aqueous suspensions and water-soluble metal-thiourea complexes. The clay could be saponite, montmorillonite, hectorite and laponite, while the metal sulfide could be cobalt sulfide, nickel sulfide, zinc sulfide, cadmium sulfide, and lead sulfide. In the nanocomposites, the clay could be incorporated with the metal sulfide pillars and metal sulfide nanoparticles. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).