999 resultados para West Antarctica


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Advanced Land Observation System (ALOS) Phased-Array Synthetic-Aperture Radar (PALSAR) is an L-band frequency (1.27 GHz) radar capable of continental-scale interferometric observations of ice sheet motion. Here, we show that PALSAR data yield excellent measurements of ice motion compared to C-band (5.6 GHz) radar data because of greater temporal coherence over snow and firn. We compare PALSAR velocities from year 2006 in Pine Island Bay, West Antarctica with those spanning years 1974 to 2007. Between 1996 and 2007, Pine Island Glacier sped up 42% and ungrounded over most of its ice plain. Smith Glacier accelerated 83% and ungrounded as well. Their largest speed up are recorded in 2007. Thwaites Glacier is not accelerating but widening with time and its eastern ice shelf doubled its speed. Total ice discharge from these glaciers increased 30% in 12 yr and the net mass loss increased 170% from 39 ± 15 Gt/yr to 105 ± 27 Gt/yr. Longer-term velocity changes suggest only a moderate loss in the 1970s. As the glaciers unground into the deeper, smoother beds inland, the mass loss from this region will grow considerably larger in years to come.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three megascopic and disseminated tephra layers (which we refer to as layers A, B, and C) occur in late Quaternary glaciomarine sediments deposited on the West Antarctic continental margin. The stratigraphical positions of the distal tephra layers in 28 of the 32 studied sediment cores suggest their deposition during latest Marine Isotopic Stage (MIS) 6 and MIS 5. One prominent tephra layer (layer B), which was deposited subsequent to the penultimate deglaciation (Termination II), is present in almost all of the cores. Geochemical analyses carried out on the glass shards of the layers reveal a uniform trachytic composition and indicate Marie Byrd Land (MBL), West Antarctica, as the common volcanic source. The geochemical composition of the marine tephra is compared to that of ash layers of similar age described from Mount Moulton and Mount Takahe in MBL and from ice cores drilled at Dome Fuji, Vostok and EPICA Dome C in East Antarctica. The three tephra layers in the marine sediments are chemically indistinguishable. Also five englacial ash layers from Mt. Moulton, which originated from highly explosive Plinian eruptions of the Mt. Berlin volcano in MBL between 142 ka and 92 ka ago, are chemically very similar, as are two tephra layers erupted from Mt. Takahe at ca. 102 ka and ca. 93 ka. Statistical analysis of the chemical composition of the glass shards indicates that the youngest tephra (layer A) in the marine cores matches the ash layer erupted from Mt. Berlin at 92 ka, which was previously correlated with tephra layers in the EPICA Dome C and the Dome Fuji ice cores. A tephra erupted from Mt. Berlin at 136 ka seems to correspond to a tephra layer deposited at 1733 m in the EPICA Dome C ice core. Additionally, the oldest tephra (layer C) in the marine sediments resembles an ash layer deposited at Vostok around 142 ka, but statistical evidence for the validity of this correlation is inconclusive. Although our results underscore the potential of tephrostratigraphy for correlating terrestrial and marine palaeoclimate archives, our study also reveals limitations of this technique, which may result in the miscorrelation of tephra. Such pitfalls comprise failure to recognise the occurrence of various tephra layers in marine sediment cores, 'swamping' of records with chemically indistinguishable tephra from a single volcanic source, and exclusive use of 'geochemical fingerprinting' for correlating ash layers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large uncertainties remain in the current and future contribution to sea level rise from Antarctica. Climate warming may increase snowfall in the continent's interior, but enhance glacier discharge at the coast where warmer air and ocean temperatures erode the buttressing ice shelves. Here, we use satellite interferometric synthetic-aperture radar observations from 1992 to 2006 covering 85% of Antarctica's coastline to estimate the total mass flux into the ocean. We compare the mass fluxes from large drainage basin units with interior snow accumulation calculated from a regional atmospheric climate model for 1980 to 2004. In East Antarctica, small glacier losses in Wilkes Land and glacier gains at the mouths of the Filchner and Ross ice shelves combine to a near-zero loss of 4 ± 61 Gt/yr. In West Antarctica, widespread losses along the Bellingshausen and Amundsen seas increased the ice sheet loss by 59% in 10 years to reach 132 ± 60 Gt/yr in 2006. In the Peninsula, losses increased by 140% to reach 60 ± 46 Gt/yr in 2006. Losses are concentrated along narrow channels occupied by outlet glaciers and are caused by ongoing and past glacier acceleration. Changes in glacier flow therefore have a significant, if not dominant impact on ice sheet mass balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.

Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O manto polar antártico retêm informação paleoclimatologica por entres suas camadas de neve e gelo. O gelo antártico tem revelado a base de dados paleoclimática de maior resolução para os últimos 800 mil anos. Os padrões de transporte atmosférico refletem a composição e a fonte do particulado encontrado na neve e no gelo do continente Antártico. Estando relacionado a processos climáticos, as características desse transporte alteram em quantidade e qualidade as espécies químicas que se depositam sobre o manto de gelo. Dessa forma, o estudo dos depósitos de particulado ao longo das camadas de neve/gelo na Antártica pode sugerir mudanças nos padrões de transporte atmosférico. Atualmente a comunidade científica discute as diferenças de padrões climáticos entre o leste e o oeste antártico. Enquanto de forma geral observa-se instabilidade no setor oeste, o clima da antártica oriental demonstra relativa estabilidade climática. Neste estudo, analisamos dois testemunhos de gelo recente de duas regiões com características climáticas diferentes do continente Antártico. No Platô Detroit situado na Península Antártica (6410′S/0600′O), analisamos a variabilidade de Black Carbon (BC) ao longo de 20 metros de neve. O BC encontrado na Península Antártica apresentou baixas concentrações comparáveis as encontradas no gelo do Artico período pré-industrial. Nossos resultados sugerem que sua variabiliade corresponde à sazonalidade dos períodos de queimada nos continentes do Hemisfério Sul. No interior do continente Antártico, analisamos o particulado em geral por um processo de microanálise ao longo de um testemunho de 40 metros extraído em Mont Johns (79o55′S/09423′O). Encontramos uma tendência negativa na deposição de poeira mineral (AlSi) entre 1967 e 2007. Nossos resultados sugerem que esta tendência seja resultado de um crescente isolamento atmosférico da região central do continente antártico pelo aumento da intensidade dos ventos ao redor da Antártica. Este aumento na intensidade dos ventos reflete por sua vez o resfriamento da alta atmosfera no centro antártico causado pela depleção da camada de ozônio na região. Adicionalmente, amostras de diferentes microambientes de Patriot Hills (8018′S/08121′O) foram coletadas de maneira asséptica para análise microbiológica. As amostras foram cultivadas em meio R2 e paralelamente o DNA total extraído foi sequenciado pela técnica de pirosequenciamento. Os resultados preliminares desta analise mostram grande riqueza de espécies dos mais variados grupos. Os resultados deste trabalho caracterizam três diferentes parâmetros relacionados a deposição atmosférica em duas áreas pouco exploradas e de grande interesse científico do continente antártico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland. The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities. The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle. The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991. Greenhouse gas concentrations continued to rise, increasing by more than expected based on with CO2 the 1979 to 2007 trend. In the oceans, the global mean uptake for 2007 is estimated to be 1.67 Pg-C, about CO2 0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979. Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years. In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recorded reflection profiles of firn through large areas of West Antarctica and part of the East Antarctic plateau using 400 MHz short-pulse radar. The locations show accumulation rates that vary from well above to well below the vertical radar resolution. Most reflection horizons have extensive lateral continuity, and are composed of distinctive wavelets with a consistent phase polarity sequence within their successive half-cycles. We modeled these waveforms, and conclude that they arise from thin, double layers of ice over hoar, which is consistent with the standard model of firn stratification. In addition, we conclude that ice/hoar layers are extensive throughout West Antarctica and also present (although more sparsely) beneath the Antarctic Plateau.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemistry data from 16, 50-115 m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO42- and excess (xs) SO42- over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations Of SO42- as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO42- time series demonstrates that at several sites concentrations Of ssSO(4)(2-) are higher when sea-ice (SIE) extent is greater, and the inverse for XSS04. Concentrations Of XSS04 from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic XSSO42- concentrations are associated with SIE from the Bellingshausen-Amundsen-Ross region. The only notable rise of the last 200 years in xsSO(4)(2-), around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO(4)(2-) production in the mid-low latitudes and/or an increase in transport efficiency from the mid-low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas Of ssSO(4)(2-) and xsSO(4)(2-) delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal convection in the Antarctic and Greenland ice sheets has been dismissed on the grounds that radio-echo stratigraphy is undisturbed for long distances. However, the undisturbed stratigraphy lies, for the most part, above the density inversion in polar ice sheets and therefore does not disprove convection. An echo-free zone is widespread below the density inversion, yet nobody has cited this as a strong indication that convection is indeed present at d�pth. A generalized Rayleigh criterion for thermal convection in e1astic-viscoplastic polycrystalline solids heated from below is developed and applied to ice-sheet convection. An infinite Rayleigh number at the onset of primary creep decreases with time and becomes constant when secondary creep dominates, suggesting that any thermal buoyancy stress can initiate convection but convection cannot be sustained below a buoyancy stress of about 3 kPa. An analysis of the temperature profile down the Byrd Station core hole suggests that about 1000 m of ice below the density inversion will sustain convection. Creep along the Byrd Station strain network, radar sounding in East Antarctica, and seismic sounding in West Antarctica are examined for evidence of convective creep superimposed on advective creep. It is concluded that the evidence for convection is there, if we look for it with the intention offinding it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Nino Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations in Wright Valley, adjacent to the Transantarctic Mountains in East Antarctica, shed light on the question of whether high-latitude Pliocene climate was warm enough to cause widespread deglaciation of the East Antarctic craton with a concurrent Magellanic moorland-like environment. If Pliocene age diatoms, presently in glaciogenic deposits high in the Transantarctic Mountains, had come from seaways on the East Antarctic craton, an expanding Late Pliocene ice sheet must have first eroded them from marine sediments and then deposited the diatoms at their present high-altitude locations. This hypothetical expanding glacier would have had to have come through Wright Valley. Glacial drift sediments from the central Wright Valley were mapped, sampled, analyzed, and Ar-40/Ar-39 whole rock dated. Our evidence indicates that an East Antarctic outlet glacier has not expanded through Wright Valley, and hence cannot have overridden the Dry Valleys sector of the Transantarctic Mountains, any time in the past 3.8 myr. Rather, there was only moderate Pliocene expansion of local cola-based alpine glaciers and continuous cold-desert conditions in Wright Valley. Persistence of a cold-desert paleoenvironment implies that the sector of the East Antarctic Ice Sheet adjacent to Wright Valley has remained relatively stable without melting ablation zones since at least 3.8 Ma, in Early Pliocene time. A further implication is that Antarctic Ice Sheet behavior in the Pliocene was much like that in the Quaternary, when the ice sheet consisted of a stable, terrestrial core in East Antarctica and a dynamic, marine-based appendage in West Antarctica.