925 resultados para Weighted histogram analysis method
Resumo:
The aim of my thesis is to parallelize the Weighting Histogram Analysis Method (WHAM), which is a popular algorithm used to calculate the Free Energy of a molucular system in Molecular Dynamics simulations. WHAM works in post processing in cooperation with another algorithm called Umbrella Sampling. Umbrella Sampling has the purpose to add a biasing in the potential energy of the system in order to force the system to sample a specific region in the configurational space. Several N independent simulations are performed in order to sample all the region of interest. Subsequently, the WHAM algorithm is used to estimate the original system energy starting from the N atomic trajectories. The parallelization of WHAM has been performed through CUDA, a language that allows to work in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel implementation may sensibly speed up the WHAM execution compared to previous serial CPU imlementations. However, the WHAM CPU code presents some temporal criticalities to very high numbers of interactions. The algorithm has been written in C++ and executed in UNIX systems provided with NVIDIA graphic cards. The results were satisfying obtaining an increase of performances when the model was executed on graphics cards with compute capability greater. Nonetheless, the GPUs used to test the algorithm is quite old and not designated for scientific calculations. It is likely that a further performance increase will be obtained if the algorithm would be executed in clusters of GPU at high level of computational efficiency. The thesis is organized in the following way: I will first describe the mathematical formulation of Umbrella Sampling and WHAM algorithm with their apllications in the study of ionic channels and in Molecular Docking (Chapter 1); then, I will present the CUDA architectures used to implement the model (Chapter 2); and finally, the results obtained on model systems will be presented (Chapter 3).
Resumo:
The general objective of this study was to evaluate the ordered weighted averaging (OWA) method, integrated to a geographic information systems (GIS), in the definition of priority areas for forest conservation in a Brazilian river basin, aiming at to increase the regional biodiversity. We demonstrated how one could obtain a range of alternatives by applying OWA, including the one obtained by the weighted linear combination method and, also the use of the analytic hierarchy process (AHP) to structure the decision problem and to assign the importance to each criterion. The criteria considered important to this study were: proximity to forest patches; proximity among forest patches with larger core area; proximity to surface water; distance from roads: distance from urban areas; and vulnerability to erosion. OWA requires two sets of criteria weights: the weights of relative criterion importance and the order weights. Thus, Participatory Technique was used to define the criteria set and the criterion importance (based in AHP). In order to obtain the second set of weights we considered the influence of each criterion, as well as the importance of each one, on this decision-making process. The sensitivity analysis indicated coherence among the criterion importance weights, the order weights, and the solution. According to this analysis, only the proximity to surface water criterion is not important to identify priority areas for forest conservation. Finally, we can highlight that the OWA method is flexible, easy to be implemented and, mainly, it facilitates a better understanding of the alternative land-use suitability patterns. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.
Resumo:
This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing oneor more parameters in their definition. Methods that can be linked in this way arecorrespondence analysis, unweighted or weighted logratio analysis (the latter alsoknown as "spectral mapping"), nonsymmetric correspondence analysis, principalcomponent analysis (with and without logarithmic transformation of the data) andmultidimensional scaling. In this presentation I will show how several of thesemethods, which are frequently used in compositional data analysis, may be linkedthrough parametrizations such as power transformations, linear transformations andconvex linear combinations. Since the methods of interest here all lead to visual mapsof data, a "movie" can be made where where the linking parameter is allowed to vary insmall steps: the results are recalculated "frame by frame" and one can see the smoothchange from one method to another. Several of these "movies" will be shown, giving adeeper insight into the similarities and differences between these methods
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing oneor more parameters in their definition. Methods that can be linked in this way arecorrespondence analysis, unweighted or weighted logratio analysis (the latter alsoknown as "spectral mapping"), nonsymmetric correspondence analysis, principalcomponent analysis (with and without logarithmic transformation of the data) andmultidimensional scaling. In this presentation I will show how several of thesemethods, which are frequently used in compositional data analysis, may be linkedthrough parametrizations such as power transformations, linear transformations andconvex linear combinations. Since the methods of interest here all lead to visual mapsof data, a "movie" can be made where where the linking parameter is allowed to vary insmall steps: the results are recalculated "frame by frame" and one can see the smoothchange from one method to another. Several of these "movies" will be shown, giving adeeper insight into the similarities and differences between these methods.
Resumo:
With the trend in molecular epidemiology towards both genome-wide association studies and complex modelling, the need for large sample sizes to detect small effects and to allow for the estimation of many parameters within a model continues to increase. Unfortunately, most methods of association analysis have been restricted to either a family-based or a case-control design, resulting in the lack of synthesis of data from multiple studies. Transmission disequilibrium-type methods for detecting linkage disequilibrium from family data were developed as an effective way of preventing the detection of association due to population stratification. Because these methods condition on parental genotype, however, they have precluded the joint analysis of family and case-control data, although methods for case-control data may not protect against population stratification and do not allow for familial correlations. We present here an extension of a family-based association analysis method for continuous traits that will simultaneously test for, and if necessary control for, population stratification. We further extend this method to analyse binary traits (and therefore family and case-control data together) and accurately to estimate genetic effects in the population, even when using an ascertained family sample. Finally, we present the power of this binary extension for both family-only and joint family and case-control data, and demonstrate the accuracy of the association parameter and variance components in an ascertained family sample.
Resumo:
The aim of our study was to assess the diagnostic usefulness of the gray level parameters to distinguish osteolytic lesions using radiological images. Materials and Methods: A retrospective study was carried out. A total of 76 skeletal radiographs of osteolytic metastases and 67 radiographs of multiple myeloma were used. The cases were classified into nonflat (MM1 and OL1) and flat bones (MM2 and OL2). These radiological images were analyzed by using a computerized method. The parameters calculated were mean, standard deviation, and coefficient of variation (MGL, SDGL, and CVGL) based on gray level histogram analysis of a region-of-interest.Diagnostic utility was quantified bymeasurement of parameters on osteolyticmetastases andmultiplemyeloma, yielding quantification of area under the receiver operating characteristic (ROC) curve (AUC). Results: Flat bone groups (MM2 and OL2) showed significant differences in mean values of MGL ( = 0.048) and SDGL ( = 0.003). Their corresponding values of AUC were 0.758 for MGL and 0.883 for SDGL in flat bones. In nonflat bones these gray level parameters do not show diagnostic ability. Conclusion: The gray level parametersMGL and SDGL show a good discriminatory diagnostic ability to distinguish between multiple myeloma and lytic metastases in flat bones.
Resumo:
Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.
Resumo:
A simple, low-cost concentric capillary nebulizer (CCN) was developed and evaluated for ICP spectrometry. The CCN could be operated at sample uptake rates of 0.050-1.00 ml min'^ and under oscillating and non-oscillating conditions. Aerosol characteristics for the CCN were studied using a laser Fraunhofter diffraction analyzer. Solvent transport efficiencies and transport rates, detection limits, and short- and long-term stabilities were evaluated for the CCN with a modified cyclonic spray chamber at different sample uptake rates. The Mg II (280.2nm)/l\/lg 1(285.2nm) ratio was used for matrix effect studies. Results were compared to those with conventional nebulizers, a cross-flow nebulizer with a Scott-type spray chamber, a GemCone nebulizer with a cyclonic spray chamber, and a Meinhard TR-30-K3 concentric nebulizer with a cyclonic spray chamber. Transport efficiencies of up to 57% were obtained for the CCN. For the elements tested, short- and long-term precisions and detection limits obtained with the CCN at 0.050-0.500 ml min'^ are similar to, or better than, those obtained on the same instrument using the conventional nebulizers (at 1.0 ml min'^). The depressive and enhancement effects of easily ionizable element Na, sulfuric acid, and dodecylamine surfactant on analyte signals with the CCN are similar to, or better than, those obtained with the conventional nebulizers. However, capillary clog was observed when the sample solution with high dissolved solids was nebulized for more than 40 min. The effects of data acquisition and data processing on detection limits were studied using inductively coupled plasma-atomic emission spectrometry. The study examined the effects of different detection limit approaches, the effects of data integration modes, the effects of regression modes, the effects of the standard concentration range and the number of standards, the effects of sample uptake rate, and the effect of Integration time. All the experiments followed the same protocols. Three detection limit approaches were examined, lUPAC method, the residual standard deviation (RSD), and the signal-to-background ratio and relative standard deviation of the background (SBR-RSDB). The study demonstrated that the different approaches, the integration modes, the regression methods, and the sample uptake rates can have an effect on detection limits. The study also showed that the different approaches give different detection limits and some methods (for example, RSD) are susceptible to the quality of calibration curves. Multicomponents spectral fitting (MSF) gave the best results among these three integration modes, peak height, peak area, and MSF. Weighted least squares method showed the ability to obtain better quality calibration curves. Although an effect of the number of standards on detection limits was not observed, multiple standards are recommended because they provide more reliable calibration curves. An increase of sample uptake rate and integration time could improve detection limits. However, an improvement with increased integration time on detection limits was not observed because the auto integration mode was used.
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods
Resumo:
An analysis method for diffusion tensor (DT) magnetic resonance imaging data is described, which, contrary to the standard method (multivariate fitting), does not require a specific functional model for diffusion-weighted (DW) signals. The method uses principal component analysis (PCA) under the assumption of a single fibre per pixel. PCA and the standard method were compared using simulations and human brain data. The two methods were equivalent in determining fibre orientation. PCA-derived fractional anisotropy and DT relative anisotropy had similar signal-to-noise ratio (SNR) and dependence on fibre shape. PCA-derived mean diffusivity had similar SNR to the respective DT scalar, and it depended on fibre anisotropy. Appropriate scaling of the PCA measures resulted in very good agreement between PCA and DT maps. In conclusion, the assumption of a specific functional model for DW signals is not necessary for characterization of anisotropic diffusion in a single fibre.
Resumo:
Sensory thresholds are often collected through ascending forced-choice methods. Group thresholds are important for comparing stimuli or populations; yet, the method has two problems. An individual may correctly guess the correct answer at any concentration step and might detect correctly at low concentrations but become adapted or fatigued at higher concentrations. The survival analysis method deals with both issues. Individual sequences of incorrect and correct answers are adjusted, taking into account the group performance at each concentration. The technique reduces the chance probability where there are consecutive correct answers. Adjusted sequences are submitted to survival analysis to determine group thresholds. The technique was applied to an aroma threshold and a taste threshold study. It resulted in group thresholds similar to ASTM or logarithmic regression procedures. Significant differences in taste thresholds between younger and older adults were determined. The approach provides a more robust technique over previous estimation methods.
Resumo:
Piezoelectric actuators are widely used in positioning systems which demand high resolution such as scanning microscopy, fast mirror scanners, vibration cancellation, cell manipulation, etc. In this work a piezoelectric flextensional actuator (PFA), designed with the topology optimization method, is experimentally characterized by the measurement of its nanometric displacements using a Michelson interferometer. Because this detection process is non-linear, adequate techniques must be applied to obtain a linear relationship between an output electrical signal and the induced optical phase shift. Ideally, the bias phase shift in the interferometer should remain constant, but in practice it suffers from fading. The J1-J4 spectral analysis method provides a linear and direct measurement of dynamic phase shift in a no-feedback and no-phase bias optical homodyne interferometer. PFA application such as micromanipulation in biotechnology demands fast and precise movements. So, in order to operate with arbitrary control signals the PFA must have frequency bandwidth of several kHz. However as the natural frequencies of the PFA are low, unwanted dynamics of the structure are often a problem, especially for scanning motion, but also if trajectories have to be followed with high velocities, because of the tracking error phenomenon. So the PFA must be designed in such a manner that the first mechanical resonance occurs far beyond this band. Thus it is important to know all the PFA resonance frequencies. In this work the linearity and frequency response of the PFA are evaluated up to 50 kHz using optical interferometry and the J1-J4 method.
Resumo:
Background and Objective. Ever since the human development index was published in 1990 by the United Nations Development Programme (UNDP), many researchers started searching and corporative studying for more effective methods to measure the human development. Published in 1999, Lai’s “Temporal analysis of human development indicators: principal component approach” provided a valuable statistical way on human developmental analysis. This study presented in the thesis is the extension of Lai’s 1999 research. ^ Methods. I used the weighted principal component method on the human development indicators to measure and analyze the progress of human development in about 180 countries around the world from the year 1999 to 2010. The association of the main principal component obtained from the study and the human development index reported by the UNDP was estimated by the Spearman’s rank correlation coefficient. The main principal component was then further applied to quantify the temporal changes of the human development of selected countries by the proposed Z-test. ^ Results. The weighted means of all three human development indicators, health, knowledge, and standard of living, were increased from 1999 to 2010. The weighted standard deviation for GDP per capita was also increased across years indicated the rising inequality of standard of living among countries. The ranking of low development countries by the main principal component (MPC) is very similar to that by the human development index (HDI). Considerable discrepancy between MPC and HDI ranking was found among high development countries with high GDP per capita shifted to higher ranks. The Spearman’s rank correlation coefficient between the main principal component and the human development index were all around 0.99. All the above results were very close to outcomes in Lai’s 1999 report. The Z test result on temporal analysis of main principal components from 1999 to 2010 on Qatar was statistically significant, but not on other selected countries, such as Brazil, Russia, India, China, and U.S.A.^ Conclusion. To synthesize the multi-dimensional measurement of human development into a single index, the weighted principal component method provides a good model by using the statistical tool on a comprehensive ranking and measurement. Since the weighted main principle component index is more objective because of using population of nations as weight, more effective when the analysis is across time and space, and more flexible when the countries reported to the system has been changed year after year. Thus, in conclusion, the index generated by using weighted main principle component has some advantage over the human development index created in UNDP reports.^