573 resultados para Wavelet de noising
Resumo:
Spatial resolution is a key parameter of all remote sensing satellites and platforms. The nominal spatial resolution of satellites is a well-known characteristic because it is directly related to the area in ground that represents a pixel in the detector. Nevertheless, in practice, the actual resolution of a specific image obtained from a satellite is difficult to know precisely because it depends on many other factors such as atmospheric conditions. However, if one has two or more images of the same region, it is possible to compare their relative resolutions. In this paper, a wavelet-decomposition-based method for the determination of the relative resolution between two remotely sensed images of the same area is proposed. The method can be applied to panchromatic, multispectral, and mixed (one panchromatic and one multispectral) images. As an example, the method was applied to compute the relative resolution between SPOT-3, Landsat-5, and Landsat-7 panchromatic and multispectral images taken under similar as well as under very different conditions. On the other hand, if the true absolute resolution of one of the images of the pair is known, the resolution of the other can be computed. Thus, in the last part of this paper, a spatial calibrator that is designed and constructed to help compute the absolute resolution of a single remotely sensed image is described, and an example of its use is presented.
Resumo:
Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.
Resumo:
Natural images are characterized by the multiscaling properties of their contrast gradient, in addition to their power spectrum. In this Letter we show that those properties uniquely define an intrinsic wavelet and present a suitable technique to obtain it from an ensemble of images. Once this wavelet is known, images can be represented as expansions in the associated wavelet basis. The resulting code has the remarkable properties that it separates independent features at different resolution level, reducing the redundancy, and remains essentially unchanged under changes in the power spectrum. The possible generalization of this representation to other systems is discussed.
Resumo:
A major issue in the application of waveform inversion methods to crosshole georadar data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a time-domain waveform inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little-to-no trade-off between the wavelet estimation and the tomographic imaging procedures.
Resumo:
A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.
Resumo:
EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9).
Resumo:
O objetivo deste trabalho foi definir a resolução espacial mais apropriada para representar a variabilidade da elevação, declividade, curvatura em perfil e índice de umidade topográfica de um terreno, por meio de avaliações com a transformada wavelet. Os dados utilizados no estudo têm sua origem em três transectos de 27 km, posicionados em áreas do Planalto, Rebordo do Planalto e Depressão Central na região central do Estado do Rio Grande do Sul. As variáveis - elevação, declividade, curvatura em perfil e índice de umidade topográfica - foram derivadas de um modelo digital de elevação Topodata com resolução de 30 m. A avaliação da resolução com a máxima variabilidade foi realizada pela aplicação da wavelet-mãe, denominada Morlet. Os resultados foram analisados a partir do isograma e do escalograma dos coeficientes wavelet e indicaram que sensores remotos com resolução espacial próxima a 32 e 40 m podem ser utilizados em pesquisas que considerem os atributos de terreno, como declividade, curvatura em perfil e índice de umidade topográfica, ou, ainda, fenômenos ambientais correlacionados a eles. No entanto, não foi possível estabelecer um valor conclusivo para a resolução espacial mais adequada para a variável elevação.
Resumo:
This paper proposes a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition at which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and, for embedding, to change the wavelet samples depending on the average of relevant frame¿s samples. The experimental results show that the method has a very high capacity (about 11,000 bps), without significant perceptual distortion (ODG in [¿1 ,0] and SNR about 30dB), and provides robustness against common audio signal processing such as additive noise, filtering, echo and MPEG compression (MP3).
Resumo:
The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.
Resumo:
The continuous wavelet transform is obtained as a maximumentropy solution of the corresponding inverse problem. It is well knownthat although a signal can be reconstructed from its wavelet transform,the expansion is not unique due to the redundancy of continuous wavelets.Hence, the inverse problem has no unique solution. If we want to recognizeone solution as "optimal", then an appropriate decision criterion hasto be adopted. We show here that the continuous wavelet transform is an"optimal" solution in a maximum entropy sense.
Resumo:
A discussion on the expression proposed in [1]–[3]for deconvolving the wideband density function is presented. Weprove here that such an expression reduces to be proportionalto the wideband correlation receiver output, or continuous wavelettransform of the received signal with respect to the transmittedone. Moreover, we show that the same result has been implicitlyassumed in [1], when the deconvolution equation is derived. Westress the fact that the analyzed approach is just the orthogonalprojection of the density function onto the image of the wavelettransform with respect to the transmitted signal. Consequently,the approach can be considered a good representation of thedensity function only under the prior knowledge that the densityfunction belongs to such a subspace. The choice of the transmittedsignal is thus crucial to this approach.
Resumo:
The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.
Resumo:
Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.
Resumo:
The objective of this thesis is to study wavelets and their role in turbulence applications. Under scrutiny in the thesis is the intermittency in turbulence models. Wavelets are used as a mathematical tool to study the intermittent activities that turbulence models produce. The first section generally introduces wavelets and wavelet transforms as a mathematical tool. Moreover, the basic properties of turbulence are discussed and classical methods for modeling turbulent flows are explained. Wavelets are implemented to model the turbulence as well as to analyze turbulent signals. The model studied here is the GOY (Gledzer 1973, Ohkitani & Yamada 1989) shell model of turbulence, which is a popular model for explaining intermittency based on the cascade of kinetic energy. The goal is to introduce better quantification method for intermittency obtained in a shell model. Wavelets are localized in both space (time) and scale, therefore, they are suitable candidates for the study of singular bursts, that interrupt the calm periods of an energy flow through various scales. The study concerns two questions, namely the frequency of the occurrence as well as the intensity of the singular bursts at various Reynolds numbers. The results gave an insight that singularities become more local as Reynolds number increases. The singularities become more local also when the shell number is increased at certain Reynolds number. The study revealed that the singular bursts are more frequent at Re ~ 107 than other cases with lower Re. The intermittency of bursts for the cases with Re ~ 106 and Re ~ 105 was similar, but for the case with Re ~ 104 bursts occured after long waiting time in a different fashion so that it could not be scaled with higher Re.