230 resultados para Waveforms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France August 23-26, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2. © Author(s) 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um dos princípios da Gestão é: “If you cannot measure it, you cannot improve it.” In The Economist – 26.Dez.2008, idea of 19th century English physicist Lord Kelvin. Embora seja uma afirmação aplicável à gestão económica, também pode ser utilizada no domínio da gestão da energia. Este trabalho surge da necessidade sentida pela empresa Continental - Industria Têxtil do Ave, S.A. em efetuar uma atualização dos seus standards de produção, minimizando os seus consumos de eletricidade e gás natural. Foi necessário efetuar o levantamento dos consumos em diversas máquinas e equipamentos industriais, caracterizando e analisando os consumos ao longo de todo o processo produtivo. Para o tratamento de dados recolhidos foi desenvolvida uma folha de cálculo em MS Office ExcelTM com metodologia adequada ao equipamento em análise, que dará apoio ao decisor para a identificação dos aspetos que melhorem o processo produtivo e garantam uma elevada eficiência energética. Porém, não se enquadra no âmbito do Plano Nacional de Racionalização de Energia, sendo uma “auditoria energética” ao processo produtivo. Recentemente, a empresa, tem vindo a utilizar equipamentos eletrónicos que permitem otimizar o funcionamento mecânico dos equipamentos e das potências instaladas dos transformadores, na tentativa de racionalizar o consumo da energia elétrica. Outros equipamentos como, conversores de frequência para controlo de motores, balastros eletrónicos que substituem os convencionais balastros ferromagnéticos das lâmpadas de descarga fluorescente, têm sido incluídos ao nível das instalações elétricas, sendo gradualmente substituída a eletromecânica pela eletrónica. Este tipo de soluções vem deteriorar as formas de onda da corrente e da tensão do sistema pela introdução de distorções harmónicas. Faz ainda parte deste trabalho, um estudo de uma solução que melhore, simultaneamente o fator de potência e reduza as harmónicas presentes num posto de transformação localizado no seio da fábrica. Esta solução, permite melhorar a qualidade da energia elétrica e as condições de continuidade de serviço, garantindo melhores condições de exploração e incrementando a produtividade da empresa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is important to have better evaluation and understanding of the motor neuron physiology, with the goal to early and objectively diagnose and treat patients with neurodegenerative pathologies. The Compound Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for neurodegenerative pathologies, such as ALS, and enables a quick analysis of the muscle action potentials in response to motor nerve stimulation. This work aims to study the influence of different pulse modulated waveforms in peripheral nerve excitability by CMAP scan technique on healthy subjects. A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium nerve on the right wrist and electromyography signal collected on the Abductor Pollicis Brevis (APB) muscle surface on the right thumb. Stimulation was performed with an increasing intensities range from 4 to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per subject, each repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on each current intensity step. The square pulse needs less current intensity to generate the same response amplitude regarding the other waves and presents a more steep curve slope and this effect is gradually decreasing for the triangular and quadratic pulse,respectively, being the difference even more evident regarding the biphasic pulse. The control of the waveform stimulation pulse allows varying the stimulusresponse curve slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Reconstruction of the central aortic pressure wave from the noninvasive recording of the radial pulse with applanation tonometry has become a standard tool in the field of hypertension. It is not presently known whether recording the radial pulse on the dominant or the nondominant side has any effect on such reconstruction. METHOD: We carried out radial applanation tonometry on both forearms in young, healthy, male volunteers, who were either sedentary (n = 11) or high-level tennis players (n = 10). The purpose of including tennis players was to investigate individuals with extreme asymmetry between the dominant and nondominant upper limb. RESULTS: In the sedentary individuals, forearm circumference and handgrip strength were slightly larger on the dominant (mean +/- SD respectively 27.9 +/- 1.5 cm and 53.8 +/- 10 kg) than on nondominant side (27.3 +/- 1.6 cm, P < 0.001 vs. dominant, and 52.1 +/- 11 kg, P = NS). In the tennis players, differences between sides were more conspicuous (forearm circumference: dominant 28.0 +/- 1.7 cm nondominant 26.4 +/- 1.5 cm, P < 0.001; handgrip strength 61.4 +/- 10.8 vs. 53.4 +/- 9.7 kg, P < 0.001). We found that in both sedentary individuals and tennis players, the radial pulse had identical shape on both sides and, consequently, the reconstructed central aortic pressure waveforms, as well as derived indices of central pulsatility, were not dependent on the side where applanation tonometry was carried out. CONCLUSION: Evidence from individuals with maximal asymmetry of dominant vs. nondominant upper limb indicates that laterality of measurement is not a methodological issue for central pulse wave analysis carried out with radial applanation tonometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multisensory interactions are a fundamental feature of brain organization. Principles governing multisensory processing have been established by varying stimulus location, timing and efficacy independently. Determining whether and how such principles operate when stimuli vary dynamically in their perceived distance (as when looming/receding) provides an assay for synergy among the above principles and also means for linking multisensory interactions between rudimentary stimuli with higher-order signals used for communication and motor planning. Human participants indicated movement of looming or receding versus static stimuli that were visual, auditory, or multisensory combinations while 160-channel EEG was recorded. Multivariate EEG analyses and distributed source estimations were performed. Nonlinear interactions between looming signals were observed at early poststimulus latencies (∼75 ms) in analyses of voltage waveforms, global field power, and source estimations. These looming-specific interactions positively correlated with reaction time facilitation, providing direct links between neural and performance metrics of multisensory integration. Statistical analyses of source estimations identified looming-specific interactions within the right claustrum/insula extending inferiorly into the amygdala and also within the bilateral cuneus extending into the inferior and lateral occipital cortices. Multisensory effects common to all conditions, regardless of perceived distance and congruity, followed (∼115 ms) and manifested as faster transition between temporally stable brain networks (vs summed responses to unisensory conditions). We demonstrate the early-latency, synergistic interplay between existing principles of multisensory interactions. Such findings change the manner in which to model multisensory interactions at neural and behavioral/perceptual levels. We also provide neurophysiologic backing for the notion that looming signals receive preferential treatment during perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents and compares two approaches to estimate the origin (upstream or downstream) of voltage sag registered in distribution substations. The first approach is based on the application of a single rule dealing with features extracted from the impedances during the fault whereas the second method exploit the variability of waveforms from an statistical point of view. Both approaches have been tested with voltage sags registered in distribution substations and advantages, drawbacks and comparative results are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification