994 resultados para Wave-form Inversion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined media on photographic paper. 110" x 54" Los Angeles County Museum of Art (LACMA)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: : The systolic augmentation index (sAix), calculated from the central aortic pulse wave (reconstructed from the noninvasive recording of the radial pulse with applanation tonometry), is widely used as a simple index of central arterial stiffness, but has the disadvantage of also being influenced by the timing of the reflected with respect to the forward pressure wave, as shown by its inverse dependence on heart rate (HR). During diastole, the central aortic pulse also contains reflected waves, but their relationship to arterial stiffness and HR has not been studied. METHODS: : In 48 men and 45 women, all healthy, with ages ranging from 19 to 70 years, we measured pulse wave velocity (PWV, patients supine), a standard evaluator of arterial stiffness, and carried out radial applanation tonometry (patients sitting and supine). The impact of reflected waves on the diastolic part of the aortic pressure waveform was quantified in the form of a diastolic augmentation index (dAix). RESULTS: : Across ages, sexes, and body position, there was an inverse relationship between the sAix and the dAix. When PWV and HR were added as covariates to a prediction model including age, sex and body position as main factors, the sAix was directly related to PWV (P < 0.0001) and inversely to HR (P < 0.0001). With the same analysis, the dAix was inversely related to PWV (P < 0.0001) and independent of HR (P = 0.52). CONCLUSION: : The dAix has the same degree of linkage to arterial stiffness as the more conventional sAix, while being immune to the confounding effect of HR. The quantification of diastolic aortic pressure augmentation by reflected waves could be a useful adjunct to pulse wave analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint inversion of crosshole ground-penetrating radar and seismic data can improve model resolution and fidelity of the resultant individual models. Model coupling obtained by minimizing or penalizing some measure of structural dissimilarity between models appears to be the most versatile approach because only weak assumptions about petrophysical relationships are required. Nevertheless, experimental results and petrophysical arguments suggest that when porosity variations are weak in saturated unconsolidated environments, then radar wave speed is approximately linearly related to seismic wave speed. Under such circumstances, model coupling also can be achieved by incorporating cross-covariances in the model regularization. In two case studies, structural similarity is imposed by penalizing models for which the model cross-gradients are nonzero. A first case study demonstrates improvements in model resolution by comparing the resulting models with borehole information, whereas a second case study uses point-spread functions. Although radar seismic wavespeed crossplots are very similar for the two case studies, the models plot in different portions of the graph, suggesting variances in porosity. Both examples display a close, quasilinear relationship between radar seismic wave speed in unconsolidated environments that is described rather well by the corresponding lower Hashin-Shtrikman (HS) bounds. Combining crossplots of the joint inversion models with HS bounds can constrain porosity and pore structure better than individual inversion results can.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans la première partie, nous présentons les résultats de l'étude du supraconducteur sans inversion de symétrie LaRhSi3 par spectroscopie muonique. En champ nul, nous n'avons pas détecté de champ interne. Ceci indique que la fonction d'onde de l'état supraconducteur n'est pas dominée par l'état triplet. Les mesures en champ transverse de 35G présentent une transition en accord avec la transition de phase attendue sous le champ critique Hc1. Nous avons répété ces mesures pour un champ entre Hc1 et Hc2, 150G. Le spectre obtenu pour ces mesures conserve l'asymétrie et relaxe rapidement à basse température tel que prédit pour un supraconducteur dans la phase d'Abrikosov. Néanmoins, les relaxations produites par ce balayage en température présentent une transition à près de 2 fois la température critique attendue. Dans la deuxième partie de ce mémoire, nous donnons l'interprétation des résultats de la diffraction neutronique inélastique par l'étude des champs électriques cristallins. Ces mesures ont été effectuées sur des aimants frustrés SrHo2O4 et SrDy2O4 sous la forme de poudre. L'étude des niveaux produits par les champs cristallins par la méthode des opérateurs de Stevens indique une perte du moment cinétique dans les deux matériaux. Pour le SrDy2O4, l'état fondamental serait constitué de quatre états dégénérés quasi accidentellement qui portent un moment magnétique total non-nul. Toute fois, nos mesures de susceptibilité magnétique ne montrent aucun ordre au-dessus de 50mK. Pour le SrHo2O4, le fondamental est formé d'une paire accidentelle. Nous obtenons un moment magnétique de 6.94(8)$\mu_B$ ce qui s'accorde avec les données expérimentales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse est divisée en trois parties. Une première section présente les résultats de l'étude de la formation de polarons magnétiques liés (BMP) dans le ferroaimant EuB6 par diffusion de neutrons à petits angles (SANS). La nature magnétique du système ferromagnétique est observée sous une température critique de 15K. La signature des BMP n'apparaît pas dans la diffusion de neutrons, mais ces mesures permettent de confirmer une limite inférieure de 100\AA à la longueur de cohérence des BMP (xi_{Lower}). Dans un second temps, l'étude du LaRhSi3, un supraconducteur sans symétrie d'inversion, par muSR et ZF-muSR nous permet de sonder le comportement magnétique du système dans la phase supraconductrice. Aucun champ magnétique interne n'a été détecté en ZF-muSR sous la température critique (T_c = 2.2K). Cela indique que la phase supraconductrice ne porte pas de moment cinétique intrinsèque. L'analyse du spectre d'asymétrie sous l'application d'un champ magnétique externe nous apprend que le système est faiblement type II par l'apparition de la signature de domaines magnétiques typique d'un réseau de vortex entre H_{c1}(0) et H_{c2}(0), respectivement de 80+/- 5 et 169.0 +/- 0.5 G. Finalement, la troisième section porte sur l'étude du champ magnétique interne dans l'antiferroaimant organique NIT-2Py. L'observation d'une dépendance en température des champs magnétiques internes aux sites d'implantation muonique par ZF-muSR confirme la présence d'une interaction à longue portée entre les moments cinétiques moléculaires. Ces valeurs de champs internes, comparées aux calculs basés sur la densité de spins obtenue par calculs de la théorie de la fonctionnelle de la densité, indiquent que la moitié des molécules se dimérisent et ne contribuent pas à l'ordre antiferromagnétique. La fraction des molécules contribuant à l'ordre antiferromagnétique sous la température critique (T_c = 1.33 +/- 0.01K) forme des chaines uniformément polarisées selon l'axe (1 0 -2). Ces chaines interagissent antiferromagnétiquement entre elles le long de l'axe (0 1 0) et ferromagnétiquement entre les plan [-1 0 2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MgAl2O4 ceramics were prepared by the conventional solid-state ceramic route and the dielectric properties studied in the microwave frequency region (3–13 GHz). The phase purity and crystal structure were identified using the X-ray diffraction technique. The MgAl2O4 spinel ceramics show interesting microwave dielectric properties (εr = 8.75, Qux f = 68 900 GHz (loss tangent = 0.00017 at 12.3 GHz), τf =−75 ppm/◦C). The MgAl2O4 has high negative τf, which precludes its immediate use in practical applications. Hence the microwave dielectric properties of MgAl2O4 spinels were tailored by adding different mole fractions of TiO2. The εr and Q factor of the mixed phases were increased with the molar addition of TiO2 into the spinel to form mixtures based on (1−x)MgAl2O4-xTiO2 (x = 0.0−1.0). For x = 0.25 in (1−x)MgAl2O4-xTiO2, the microwave quality factor reaches a maximum value of Qux f = 105 400 GHz (loss tangent = 0.00007 at 7.5 GHz) where εr and τf are 11.035 and −12 ppm/◦C, respectively. The microwave dielectric properties of the newly developed 0.75MgAl2O4-0.25TiO2 dielectric is superior to several commercially available low loss dielectric substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently Itatani et al. [Nature 432, 876 (2004)] introduced the new concept of molecular orbital tomography, where high harmonic generation (HHG) is used to image electronic wave functions. We describe an alternative reconstruction form, using momentum instead of dipole matrix elements for the electron recombination step in HHG. We show that using this velocity-form reconstruction, one obtains better results than using the original length-form reconstruction. We provide numerical evidence for our claim that one has to resort to extremely short pulses to perform the reconstruction for an orbital with arbitrary symmetry. The numerical evidence is based on the exact solution of the time-dependent Schrödinger equation for 2D model systems to simulate the experiment. Furthermore we show that in the case of cylindrically symmetric orbitals, such as the N2 orbital that was reconstructed in the original work, one can obtain the full 3D wave function and not only a 2D projection of it. Vor kurzem führten Itatani et al. [Nature 432, 876 (2004)] das Konzept der Molelkülorbital-Tomographie ein. Hierbei wird die Erzeugung hoher Harmonischer verwendet, um Bilder von elektronischen Wellenfunktionen zu gewinnen. Wir beschreiben eine alternative Form der Rekonstruktion, die auf Impuls- statt Dipol-Matrixelementen für den Rekombinationsschritt bei der Erzeugung der Harmonischen basiert. Wir zeigen, dass diese "Geschwindigkeitsform" der Rekonstruktion bessere Ergebnisse als die ursprüngliche "Längenform" liefert. Wir zeigen numerische Beweise für unsere Behauptung, dass man zu extrem kurzen Laserpulsen gehen muss, um Orbitale mit beliebiger Symmetrie zu rekonstruieren. Diese Ergebnisse basieren auf der exakten Lösung der zeitabhängigen Schrödingergleichung für 2D-Modellsysteme. Wir zeigen ferner, dass für zylindersymmetrische Orbitale wie das N2-Orbital, welches in der oben zitierten Arbeit rekonstruiert wurde, das volle 3D-Orbital rekonstruiert werden kann, nicht nur seine 2D-Projektion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion of a vibrational wave packet in the bound A(^1 \summe^+_u) electronic state of the sodium dimer is detected in a femtosecond pump/probe molecular beam experiment. For short times harmonic motion is seen in the total ion yield of Na^+_2 as a function of delay time between the two laser pulses. The spreading of the wave packet results in the loss of the periodic variation of the ion signal. For longer delay times (47 ps) the wave packet regains its initial form which is reflected in the revival structure of the Na^+_2 signal. Time-dependent quantum calculations reproduce the measured effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective. Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0inversion for boundary and interior PV anomalies, the Rossby-wave propagation mechanism and the CRW interaction. The behaviour of the Charney modes and the first neutral branch, which rely on tropospheric PV gradients, are arguably more applicable to the atmosphere than modes of the Eady model where the positive PV gradient exists only at the tropopause

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the tracking of extrema associated with weather systems to be applied to a broad range of fields it is necessary to remove a background field that represents the slowly varying, large spatial scales. The sensitivity of the tracking analysis to the form of background field removed is explored for the Northern Hemisphere winter storm tracks for three contrasting fields from an integration of the U. K. Met Office's (UKMO) Hadley Centre Climate Model (HadAM3). Several methods are explored for the removal of a background field from the simple subtraction of the climatology, to the more sophisticated removal of the planetary scales. Two temporal filters are also considered in the form of a 2-6-day Lanczos filter and a 20-day high-pass Fourier filter. The analysis indicates that the simple subtraction of the climatology tends to change the nature of the systems to the extent that there is a redistribution of the systems relative to the climatological background resulting in very similar statistical distributions for both positive and negative anomalies. The optimal planetary wave filter removes total wavenumbers less than or equal to a number in the range 5-7, resulting in distributions more easily related to particular types of weather system. For the temporal filters the 2-6-day bandpass filter is found to have a detrimental impact on the individual weather systems, resulting in the storm tracks having a weak waveguide type of behavior. The 20-day high-pass temporal filter is less aggressive than the 2-6-day filter and produces results falling between those of the climatological and 2-6-day filters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Egger (2008) constructs some idealised experiments to test the usefulness of piecewise potential vorticity inversion (PPVI) in the diagnosis of Rossby wave dynamics and baroclinic development. He concludes that, ``PPVI does not help us to understand the dynamics of linear Rossby waves. It provides local tendencies of the streamfunction which are unrelated to the true ones. The same way, the motion of baroclinic waves in shear flow cannot be understood by using PPVI. Moreover, the effect of boundary temperatures as determined by PPVI is unrelated to the flow evolution.'' He goes further in arguing that we should not consider velocities as ``induced'' by PV anomalies defined by carving up the global domain. However, these conclusions partly reflect the limitations of his idealised experiments and the manner in which the PV components were partitioned from one another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the potential field due to the nuclei in the methane molecule is expanded in terms of a set of spherical harmonics about the carbon nucleus, only the terms involving s, f, and higher harmonic functions differ from zero in the equilibrium configuration. Wave functions have been calculated for the equilibrium configuration, first including only the spherically symmetric s term in the potential, and secondly including both the s and the f terms. In the first calculation the complete Hartree-Fock S.C.F. wave functions were determined; in the second calculation a variation method was used to determine the best form of the wave function involving f harmonics. The resulting wave functions and electron density functions are presented and discussed