913 resultados para Wave propagation in random media
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
We implemented Biot-type porous wave equations in a pseudo-spectral numerical modeling algorithm for the simulation of Stoneley waves in porous media. Fourier and Chebyshev methods are used to compute the spatial derivatives along the horizontal and vertical directions, respectively. To prevent from overly short time steps due to the small grid spacing at the top and bottom of the model as a consequence of the Chebyshev operator, the mesh is stretched in the vertical direction. As a large benefit, the Chebyshev operator allows for an explicit treatment of interfaces. Boundary conditions can be implemented with a characteristics approach. The characteristic variables are evaluated at zero viscosity. We use this approach to model seismic wave propagation at the interface between a fluid and a porous medium. Each medium is represented by a different mesh and the two meshes are connected through the above described characteristics domain-decomposition method. We show an experiment for sealed pore boundary conditions, where we first compare the numerical solution to an analytical solution. We then show the influence of heterogeneity and viscosity of the pore fluid on the propagation of the Stoneley wave and surface waves in general.
Resumo:
The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.
Resumo:
The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.
Resumo:
The present dissertation is devoted to the construction of exact and approximate analytical solutions of the problem of light propagation in highly nonlinear media. It is demonstrated that for many experimental conditions, the problem can be studied under the geometrical optics approximation with a sufficient accuracy. Based on the renormalization group symmetry analysis, exact analytical solutions of the eikonal equations with a higher order refractive index are constructed. A new analytical approach to the construction of approximate solutions is suggested. Based on it, approximate solutions for various boundary conditions, nonlinear refractive indices and dimensions are constructed. Exact analytical expressions for the nonlinear self-focusing positions are deduced. On the basis of the obtained solutions a general rule for the single filament intensity is derived; it is demonstrated that the scaling law (the functional dependence of the self-focusing position on the peak beam intensity) is defined by a form of the nonlinear refractive index but not the beam shape at the boundary. Comparisons of the obtained solutions with results of experiments and numerical simulations are discussed.
Resumo:
The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.
Resumo:
Reaction separation processes, reactive distillation, chromatographic reactor, equilibrium theory, nonlinear waves, process control, observer design, asymptoticaly exact input/output-linearization
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
Pitch-angle scattering of electrons can limit the stably trapped particle flux in the magnetosphere and precipitate energetic electrons into the ionosphere. Whistler-mode waves generated by a temperature anisotropy can mediate this pitch-angle scattering over a wide range of radial distances and latitudes, but in order to correctly predict the phase-space diffusion, it is important to characterise the whistler-mode wave distributions that result from the instability. We use previously-published observations of number density, pitch-angle anisotropy and phase space density to model the plasma in the quiet pre-noon magnetosphere (defined as periods when AE<100nT). We investigate the global propagation and growth of whistler-mode waves by studying millions of growing ray paths and demonstrate that the wave distribution at any one location is a superposition of many waves at different points along their trajectories and with different histories. We show that for observed electron plasma properties, very few raypaths undergo magnetospheric reflection, most rays grow and decay within 30 degrees of the magnetic equator. The frequency range of the wave distribution at large L can be adequately described by the solutions of the local dispersion relation, but the range of wavenormal angle is different. The wave distribution is asymmetric with respect to the wavenormal angle. The numerical results suggest that it is important to determine the variation of magnetospheric parameters as a function of latitude, as well as local time and L-shell.
Resumo:
Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.