914 resultados para Water treatment plants.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Federal Water Quality Administration. Department of the Interior. B-166506."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several levels of complexity are available for modelling of wastewater treatment plants. Modelling local effects rely on computational fluid dynamics (CFD) approaches whereas activated sludge models (ASM) represent the global methodology. By applying both modelling approaches to pilot plant and full scale systems, this paper evaluates the value of each method and especially their potential combination. Model structure identification for ASM is discussed based on a full-scale closed loop oxidation ditch modelling. It is illustrated how and for what circumstances information obtained via CFD (computational fluid dynamics) analysis, residence time distribution (RTD) and other experimental means can be used. Furthermore, CFD analysis of the multiphase flow mechanisms is employed to obtain a correct description of the oxygenation capacity of the system studied, including an easy implementation of this information in the classical ASM modelling (e.g. oxygen transfer). The combination of CFD and activated sludge modelling of wastewater treatment processes is applied to three reactor configurations, a perfectly mixed reactor, a pilot scale activated sludge basin (ASB) and a real scale ASB. The application of the biological models to the CFD model is validated against experimentation for the pilot scale ASB and against a classical global ASM model response. A first step in the evaluation of the potential of the combined CFD-ASM model is performed using a full scale oxidation ditch system as testing scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of renewable energy with desalination technologies has emerged as an attractive solution to augment fresh water supply sustainably. Fouling and scaling are still considered as limiting factors in membrane desalination processes. For brackish water treatment, pre-treatment of reverse osmosis (RO) feed water is a key step in designing RO plants avoiding membrane fouling. This study aims to compare at pilot scale the rejection efficiency of RO membranes with multiple pre-treatment options at different water recoveries (30, 35, 40, 45 and 50%) and TDS concentrations (3500, 4000, and 4500mg/L). Synthetic brackish water was prepared and performance evaluation were carried out using brackish water reverse osmosis (BWRO) membranes (Filmtec LC-LE-4040 and Hydranautics CPA5-LD-4040) preceded by 5 and 1μm cartridge filters, 0.02μm ultra-filtration (UF) membrane, and forward osmosis (FO) membrane using 0.25M NaCl and MgCl2 as draw solutions (DS). It was revealed that FO membrane with 0.25M MgCl2 used as a draw solution (DS) and Ultra-filtration (UF) membrane followed by Filmtec membrane gave overall 98% rejection but UF facing high fouling potential due to high applied pressure. Use of 5 and 1μm cartridge filter prior to Filmtec membrane also showed effective results with 95% salt rejection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today , Providing drinking water and process water is one of the major problems in most countries ; the surface water often need to be treated to achieve necessary quality, and in this way, technological and also financial difficulties cause great restrictions in operating the treatment units. Although water supply by simple and cheap systems has been one of the important objectives in most scientific and research centers in the world, still a great percent of population in developing countries, especially in rural areas, don't benefit well quality water. One of the big and available sources for providing acceptable water is sea water. There are two ways to treat sea water first evaporation and second reverse osmosis system. Nowadays R.O system has been used for desalination because of low budget price and easily to operate and maintenance. The sea water should be pretreated before R.O plants, because there is some difficulties in raw sea water that can decrease yield point of membranes in R.O system. The subject of this research may be useful in this way, and we hope to be able to achieve complete success in design and construction of useful pretreatment systems for R.O plant. One of the most important units in the sea water pretreatment plant is filtration, the conventional method for filtration is pressurized sand filters, and the subject of this research is about new filtration which is called continuous back wash sand filtration (CBWSF). The CBWSF designed and tested in this research may be used more economically with less difficulty. It consists two main parts first shell body and second central part comprising of airlift pump, raw water feeding pipe, air supply hose, backwash chamber and sand washer as well as inlet and outlet connections. The CBWSF is a continuously operating filter, i.e. the filter does not have to be taken out of operation for backwashing or cleaning. Inlet water is fed through the sand bed while the sand bed is moving downwards. The water gets filtered while the sand becomes dirty. Simultaneously, the dirty sand is cleaned in the sand washer and the suspended solids are discharged in backwash water. We analyze the behavior of CBWSF in pretreatment of sea water instead of pressurized sand filter. There is one important factor which is not suitable for R.O membranes, it is bio-fouling. This factor is defined by Silt Density Index (SDI).measured by SDI. In this research has been focused on decreasing of SDI and NTU. Based on this goal, the prototype of pretreatment had been designed and manufactured to test. The system design was done mainly by using the design fundamentals of CBWSF. The automatic backwash sand filter can be used in small and also big water supply schemes. In big water treatment plants, the units of filters perform the filtration and backwash stages separately, and in small treatment plants, the unit is usually compacted to achieve less energy consumption. The analysis of the system showed that it may be used feasibly for water treating, especially for limited population. The construction is rapid, simple and economic, and its performance is high enough because no mobile mechanical part is used in it, so it may be proposed as an effective method to improve the water quality and consequently the hygiene level in the remote places of the country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IR radiation has been studied for micro-organism inactivation of bacterial spores on metal substrates [1] and on metal and paper substrates [2]. A near-point near infrared laser water treatment apparatus for use in dental hand-pieces was also developed [3]. To date water sterilisation research using a mid-IR laser technique is very rare. According to the World Health Organisation [4], examinations for faecal indicator bacteria remain the most sensitive and specific way of assessing the hygienic quality of water. Bacteria that fall into this group are E. coli, other coliform bacteria (including E. cloacae) and to a lesser extent, faecal streptococci [5]. Protozoan cysts from organisms which cause giardiasis are the most frequently identified cause of waterborne diseases in developed countries [6,7]. The use of aerobic bacterial endospores to monitor the efficiency of various water treatments has been shown to provide a reliable and simple indicator of overall performance of water treatment[8,9].The efficacy of IR radiation for water disinfection compared to UV treatment has been further investigated in the present study. In addition FTIR spectroscopy in conjunction with Principle Component Analysis was used to characterise structural changes within the bacterial cells and endospores following IR laser treatment. Changes in carbohydrate content of E. cloacae following IR laser treatment were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of clean drinking water in any community is absolutely vital if we as the consumers are to sustain a life of health and wellbeing. Suspended particles in surface waters not only provide the means to transport micro-organisms which can cause serious infections and diseases, they can also affect the performance capacity of a water treatment plant. In such situations pre-treatment ahead of the main plant is recommended. Previous research carried out using non-woven synthetic as a pre-filter materials for protecting slow sand filters from high turbidity showed that filter run times can be extended by several times and filters can be regenerated by simply removing and washing of the fabric ( Mbwette and Graham, 1987 and Mbwette, 1991). Geosynthetic materials have been extensively used for soil retention and dewatering in geotechnical applications and little research exists for the application of turbidity reduction in water treatment. With the development of new materials in geosynthetics today, it was hypothesized that the turbidity removal efficiency can be improved further by selecting appropriate materials. Two different geosynthetic materials (75 micron) tested at a filtration rate of 0.7 m/h yielded 30-45% reduction in turbidity with relatively minor head loss. It was found that the non-woven geotextile Propex 1701 retained the highest performance in both filtration efficiency and head loss across the varying turbidity ranges in comparison to other geotextiles tested. With 5 layers of the Propex 1701 an average percent reduction of approximately 67% was achieved with a head loss average of 4mm over the two and half hour testing period. Using the data collected for the Propex 1701 a mathematical model was developed for predicting the expected percent reduction given the ability to control the cost and as a result the number of layers to be used in a given filtration scenario.