968 resultados para Water table.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We thank Hilberts and Troch [2006] for their comment on our paper [Cartwright et al, 2005]. Before proceeding with our specific replies to the comments we would first like to clarify the definitions and meanings of equations (1)-(3) as presented by Hilberts and Troch [2006]. First, equation (1) is the fundamental definition of the (complex) effective porosity as derived by Nielsen and Perrochet [2000]. Equations (2) and (3), however, represent the linear frequency response function of the water table in the sand column responding to simple harmonic forcing. This function, which was validated by Nielsen and Perrochet [2000], provides an alternative method for estimating the complex effective porosity from the experimental sand column data in the absence of direct measurements of h_(tot) (which are required if equation (1) is to be used).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupling of sandy beach aquifers with the swash zone in the vicinity of the water table exit point is investigated through simultaneous measurements of the instantaneous shoreline (swash front) location, pore pressures and the water table exit point. The field observations reveal new insights into swash-aquifer coupling not previously gleaned from measurements of pore pressure only. In particular, for the case where the exit point is seaward of the observation point, the pore pressure response is correlated with the distance between the exit point and the shoreline in that when the distance is large the rate of pressure drop is fast and when the distance is small the rate decreases. The observations expose limitations in a simple model describing exit point dynamics which is based only on the force balance on a particle of water at the sand surface and neglects subsurface pressures. A new modified form of the model is shown to significantly improve the model-data comparison through a parameterization of the effects of capillarity into the aquifer storage coefficient. The model enables sufficiently accurate predictions of the exit point to determine when the swash uprush propagates over a saturated or a partially saturated sand surface, potentially an important factor in the morphological evolution of the beach face. Observations of the shoreward propagation of the swash-induced pore pressure waves ahead of the runup limit shows that the magnitude of the pressure fluctuation decays exponentially and that there is a linear increase in time lags, behavior similar to that of tidally induced water table waves. The location of the exit point and the intermittency of wave runup events is also shown to be significant in terms of the shore-normal energy distribution. Seaward of the mean exit point location, peak energies are small because of the saturated sand surface within the seepage face acting as a "rigid lid'' and limiting pressure fluctuations. Landward of the mean exit point the peak energies grow before decreasing landward of the maximum shoreline position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyses of spatial structure of hydrophysical fields and its vertical evolution in the Northeast Atlantic in a layer from the surface down to 2-2.5 km are carried out based on results of measurements in a testing area (31°-36°N, 20°-26°W) southeast of the Azores in autumn 1993. A description of an anti-cyclonic lens (ACL) of Mediterranean water (MW), which was found in the eastern part of the testing area from data of sets of sequential surveys, is presented. Analysis of CTD and XBT measurements in an area west of the lens allows to conclude that despite some contraction of width of the Azores Current directed eastward (from 60-80 km to 50-60 km) its total eastward volume transport for a period of time from October to November does not vary much. It is shown that intermediate salinity maxima in the northern part of the testing area formed by advection of MW and meddy destruction weakens while intersecting the Azores frontal zone (AFZ) from north to south, displacing itself to larger depth, and increases in thickness. Analysis of data shows that the number of lenses observed within the selected area north of the AFZ is two times more than that observed south of it. North of the AFZ observed salinity maximum and local temperature maxima may be associated with accumulation of heat and salt because of the fact that the AFZ is not only a southern boundary of penetration of MW into the North Atlantic, but also is a "semitransparent" boundary for Mediterranean lenses.