994 resultados para Water leakage
Resumo:
Gravity Recovery and Climate Experiment (GRACE) mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS) at a 10-day interval were converted into equivalent water height (EWH) for a ~4-year period in the Amazon basin (from July-2002 to May-2006). The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm) and spectrum truncation (10 ~ 15 mm). Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS) in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80%) is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.
Resumo:
La crescente attenzione verso un utilizzo attento, sostenibile ed economicamente efficiente della risorsa idrica rende di primaria importanza il tema delle perdite idriche e della gestione efficiente dei sistemi idrici. La richiesta di controlli dell’uso dell’acqua è stata avanzata a livello mondiale. Il problema delle perdite idriche nei Paesi industrializzati è stato così affrontato con specifiche normative e procedure di best practice gestionale per avanzare una valutazione delle perdite idriche e una limitazione degli sprechi e degli usi impropri. In quest’ambito, la pressione gioca un ruolo fondamentale nella regolazione delle perdite reali. La regolazione delle pressioni nelle diverse ore del giorno consente, infatti, di poter agire su queste ultime perdite, che aumentano all’aumentare della pressione secondo una cosiddetta legge di potenza. La motivazione della presente tesi è originata dalla necessità di quantificare il livello di perdita idrica in un sistema acquedottistico in relazione alla pressione all’interno del sistema stesso. Per avere una stima realistica che vada al di là della legge della foronomia, si vuole valutare l’influenza della deformabilità della condotta in pressione fessurata sull’entità delle perdite idriche, con particolare attenzione alle fessurazioni di tipo longitudinale. Tale studio è condotto tramite l’introduzione di un semplice modello di trave alla Winkler grazie al quale, attraverso un’analisi elastica, si descrive il comportamento di una generica condotta fessurata longitudinalmente e si valuta la quantità d’acqua perduta. I risultati ottenuti in condizioni specifiche della condotta (tipo di materiale, caratteristiche geometriche dei tubi e delle fessure, etc.) e mediante l’inserimento di opportuni parametri nel modello, calibrati sui risultati forniti da una raffinata modellazione tridimensionale agli elementi finiti delle medesime condotte, verranno poi confrontati con i risultati di alcune campagne sperimentali. Gli obiettivi del presente lavoro sono, quindi, la descrizione e la valutazione del modello di trave introdotto, per stabilire se esso, nonostante la sua semplicità, sia effettivamente in grado di riprodurre, in maniera realistica, la situazione che si potrebbe verificare nel caso di tubo fessurato longitudinalmente e di fornire risultati attendibili per lo studio delle perdite idriche. Nella prima parte verrà approfondito il problema della perdite idriche. Nella seconda parte si illustrerà il semplice modello di trave su suolo elastico adottato per l’analisi delle condotte in pressione fessurate, dopo alcuni cenni teorici ai quali si è fatto riferimento per la realizzazione del modello stesso. Successivamente, nella terza parte, si procederà alla calibrazione del modello, tramite il confronto con i risultati forniti da un’analisi tridimensionale agli elementi finiti. Infine nella quarta parte verrà ricavata la relazione flusso-pressione con particolare attenzione all’esponente di perdita, il cui valore risulterà superiore a quello predetto dalla teoria della foronomia, e verrà verificata l’effettiva validità del modello tramite un confronto con i risultati sperimentali di cui è stata fatta menzione in precedenza.
Resumo:
In contrast-enhanced (CE) MR myelography, hyperintense signal outside the intrathecal space in T1-weighted sequences with spectral presaturation inversion recovery (SPIR) is usually considered to be due to CSF leakage. We retrospectively investigated a hyperintense signal at the apex of the lung appearing in this sequence in patients with SIH (n = 5), CSF rhinorrhoea (n = 2), lumbar spine surgery (n = 1) and in control subjects (n = 6). Intrathecal application of contrast agent was performed in all patients before MR examination, but not in the control group. The reproducible signal increase was investigated with other fat suppression techniques and MR spectroscopy. All patients and controls showed strongly hyperintense signal at the apex of the lungs imitating CSF leakage into paraspinal tissue. This signal increase was identified as an artefact, caused by spectroscopically proven shift and broadening of water and lipid resonances (1-2 ppm) in this anatomical region. Only patients with SIH showed additional focal enhancement along the spinal nerve roots and/or in the spinal epidural space. In conclusion CE MR myelography with spectral selective fat suppression shows a reproducible cervicothoracic artefact, imitating CSF leakage. Selective water excitation technique as well as periradicular and epidural contrast collections may be helpful to discriminate between real pathological findings and artefacts.
Resumo:
Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.
Resumo:
The injection of gas into sub-seabed aquifers may lead to the displacement of hypoxic and hypersaline fluids (reservoir formation water) major environmental risk. To investigate this risk, the impact of formation water release on the macrofaunal community in a mesocosm experiment at Solbergstrand was conducted. 20 boxcores were exposed to 4 treatments (high salinity, hypoxic, mixed and tidal) during two weeks. The abundance of macrofauna was quantified for each treatment and richness, eveness and biodiversity indices calculated. The data are reported in this dataset.
Resumo:
This research identifies factors which influence the consumption of potable water supplied to customers' property. A complete spectrum of the customer base is examined including household, commercial and industrial properties. The research considers information from around the world, particularly demand management and tariff related projects from North America. A device termed the Flow Moderator was developed and proven, with extensive trials, to conserve water at a rate equivalent to 40 litres/property/day whilst maintaining standards-of-service considerably in excess of Regulatory requirements. A detailed appraisal of the Moderator underlines the costs and benefits available to the industry through deliberate application of even mild demand management. More radically the concept of a charging policy utilising the Moderator is developed and appraised. Advantages include the lower costs of conventional fixed-price charging systems coupled with the conservation and equitability aspects associated with metering. Explanatory models were developed linking consumption to a range of variables demonstrated that households served by a communal water service-pipe (known in the UK as a shared supply) are subject to associated restrictions equivalent to -180 litres/property/day. The research confirmed that occupancy levels were a significant predictive element for household, commercial and industrial customers. The occurrence of on-property leakage was also demonstrated to be a significant factor recorded as an event which offers considerable scope for demand management in its own right.
Resumo:
Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (∼1 km2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999–2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI,http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999–2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory during the dry season where surface flow in the area is confined to the Taylor River channel. The model also provided guidance on the importance of capturing the overland flow component, which enters the area as sheet flow during the rainy season. Overall, the modeling approach is suitable to reach better understanding of the water budget in the mangrove region. However, more detailed field data is needed to ascertain model predictions by further calibrating overland flow parameters.
Resumo:
The effects of the acidification associated with CO2 leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO2-induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO2-bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1; pH 6.6; pH 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 and 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO2 and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves.
Resumo:
Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.
Resumo:
Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.