981 resultados para Water basin


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Los embalses constituyen reservorios de agua artificiales que se forman para brindar múltiples propósitos. La generación de energía, la provisión de agua para consumo y riego, la atenuación de crecientes y los usos recreacionales, figuran como los más destacados. La calidad del agua y el grado de eutrofización, condicionan la realización de diferentes usos con consecuencias directas e indirectas para la Salud Pública y el recurso íctico. La eutrofización es precisamente uno de los problemas más recurrentes en los embalses de la provincia de Córdoba. Las hipótesis son: 1-El incremento en la concentración de nutrientes, principalmente fósforo y nitrógeno, favorecen la producción de florecimientos algales, con consecuencias negativas sobre la sociedad y el ambiente; 2 - El estrés ambiental producto del grado de eutrofización de los embalses aumenta la susceptibilidad de Odontesthes bonariensis, situación que contribuye al desarrollo de parásitos y a la disminución de su condición corporal. Los objetivos generales del proyecto son: a) Evaluar la variabilidad temporal y espacial de la calidad del agua de tres embalses de la cuenca del río Tercero; b) Estudiar diferentes características biológicas de la ictiofauna presente. Los reservorios a estudiar son Arroyo Corto (64,57W, 32,22S; 357 ha), Río Tercero (64,38W, 32,17S; 4600 ha) y Piedras Moras (64,28W, 32,18S; 830 ha). La superficie, cantidad de tributarios y características limnológicas que presentan estos embalses son contrastantes. Se determinará de manera estacional y en diferentes sitios de muestreo de cada embalse la calidad del agua para distintos usos, a través de análisis físico-químicos y biológicos según metodología estándar, realizando mediciones in situ y en laboratorio. Se evaluará el grado de eutrofia de los reservorios a través de la concentración de nutrientes, clorofila-a y transparencia de agua. Para evaluar la distribución espacial de clorofila-a se integraran SIG-sensores remotos y se determinarán modelos geoestadísticos para predecir florecimientos algales su composición y su relación con riesgos potenciales para la salud y el recurso íctico. Se determinará la diversidad y riqueza de la ictiofauna y la abundancia poblacional (captura por unidad de esfuerzo), la condición corporal, el crecimiento y el estado sanitario del pejerrey O. bonariensis. Para ello se utilizaran artes de pesca pasivos (red de enmalle, trasmallo), activos (red de arrastre) y aparejos de pesca (espineles). Por último, se determinará la abundancia y distribución de Limnoperma fortunei en el embalse Río Tercero. Los resultados obtenidos permitirán evaluar la calidad del agua, el estado trófico y prevenir los riesgos para la salud pública y animal en una de las cuencas de alto impacto antrópico del país. Por su parte, se obtendrán datos sobre distribución, ecología y condición de la ictiofauna, permitiendo el uso sustentable del recurso pesquero. Se obtendrán herramientas que facilitarán la gestión sistémica y la toma de decisiones en el manejo del recurso agua, su saneamiento y la determinación de áreas críticas de riesgo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in north-eastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future stream flows. The largest reduction (22-48% for 2076-2100) of stream flows is expected in the headwaters of the two wettest catchments, while lower decreases (22-32% for 2076-2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in stream flow, 50% and 34%, respectively (2076-2100). Thus, ecological flows might be noticeably impacted by climate change in the catchments, especially in the headwaters of those wet catchments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT Permanent Preservation Areas (PPAs) along watercourses have been the focus of numerous studies, not only because of the fragility and ecological relevance of riverine vegetation, but also because of the inefficiency demonstrated in conforming to the legislation protecting it. One of the major difficulties encountered in terms of guaranteeing the effective conservation of these riverside areas is the absence of methodologies that can be used to define them rapidly and accurately without manually determining the widths of the rivers or assigning only uniform linear values for the entire watercourse. The present work sought to develop a spatial analysis methodology capable of automatically defining permanent preservation areas along watercourses using geographic information system (GIS) software. The present study was undertaken in the Sergipe River basin, "considering the river itself and its principal affluents. We used the database of the Digital Atlas of Hydrological Resources (SEMARH/SE), and the delimitations of the PPAs were performed using ArcGIS 10.1 and the XToolPro 9.0 extension. A total of 5,003.82 hectares of Permanent Preservation Areas were delimited along the margins of the rivers analyzed, with a margin of error of <1% in delimiting the widths of the rivers within the entire area considered. The methodology described here can be used to define PPAs efficiently, relatively rapidly, and with very small margins of error, thus representing a technological advance in terms of using GIS for land management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quantitative knowledge of hydrological parameters (rainfall and flow) and their spatial and temporal variability on the regions or basins should be understood as essential to the efficient planning and management of water resources. Because the Ivinhema Basin, located in the state of Mato Grosso do Sul, Brazil, represents an important inductor on the region agricultural development, characterized as a major producer of grains and meat, it was used to characterize the hydrological study. Knowing the rainfall, flow and drainage area of each of the studied affluent, it was calculated the proportion of contribution of the affluent. To that end, it was proposed the concepts of potential and real contributions, aiming to identify the proportion of contribution of each of the affluent to the formation of the flow in the Ivinhema Basin. The results revealed that: the highest rainfall in the Ivinhema Basin occurred in the headwater regions; the mean specific flow of long duration reduces from the headwater to the mouth of Ivinhema Basin; the Sub-basin of Dorado's River has the highest potential and real contribution for the formation of the Ivinhema Basin flow; and the drainage areas of the affluent Dourados and Vacaria contribute with 53% flow of the basin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The freshwaters of the Mersey Basin have been seriously polluted for over 200 years. Anecdotal evidence suggests that the water quality was relatively clean before the start of the Industrial Revolution. The development of the cotton and chemical industries increased the pollution load to rivers, and consequently a decline in biota supported by the water was observed. Industrial prosperity led to a rapid population increase and an increase in domestic effluent. Poor treatment of this waste meant that it was a significant pollutant. As industry intensified during the 19th century, the mix of pollutants grew more complex. Eventually, in the 1980s, the government acknowledged the problem and more effort was made to improve the water quality. Knowledge of social and economic history, as well as anecdotal evidence, has been used in this paper to extrapolate the changes in water quality that occurred. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mersey Basin has been significantly polluted for over 200 years. However, there is a lack of quantitative historical water quality data as effective water quality monitoring and data recording only began 30-40 years ago. This paper assesses water pollution in the Mersey Basin using a Water Pollution Index constructed from social and economic data. Methodology, output and the difficulties involved with validation are discussed. With the limited data input available the index approximately reproduces historical water quality. The paper illustrates how historical studies of environmental water quality may provide valuable identification of factors responsible for pollution and a marker set for contemporary and future water quality issues in the context of the past. This is an issue of growing research interest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triggered seismicity is commonly associated with deep water reservoirs or injection wells where water is injected at high pressure into the reservoir rock. However, earth tremors related solely to the opening of groundwater wells are extremely rare. Here we present a clear case of seismicity induced by pore-pressure changes following the drilling of water wells that exploit a confined aquifer in the intracratonic Parana Basin of southeastern Brazil. Since 2004, shallow seismic activity, with magnitudes up to 2.9 and intensities V MM, has been observed near deep wells (120-200 m) that were drilled in early 2003 near the town of Bebedouro. The wells were drilled for irrigation purposes, cross a sandstone layer about 60-80 m thick and extract water from a confined aquifer in fractured zones between basalt flow layers. Seismic activity, mainly event swarms, has occurred yearly since 2004, mostly during the rainy season when the wells are not pumped. During the dry season when the wells are pumped almost continuously, the activity is very low. A seismographic network, installed in March 2005, has located more than 2000 microearthquakes. The events are less than 1 km deep (mostly within the 0.5 km thick basalt layer) and cover an area roughly 1.5 km x 5 km across. The seismicity generally starts in a small area and expands to larger distances with an equivalent hydraulic diffusivity ranging from 0.06 to 0.6 m(2)/s. Geophysical and geothermal logging of several wells in the area showed that water from the shallow sandstone aquifer enters the well at the top and usually forms waterfalls. The waterfalls flow down the sides of the wells and feed the confined, fractured aquifer in the basalt layer at the bottom. Two seismic areas are observed: the main area surrounds several wells that are pumped continuously during the dry season, and a second area near another well (about 10 km from the first area) that is not used for irrigation and not pumped regularly. The main area displays cyclic annual activity, but the second area does not. We explain the earthquake swarms as being triggered by pore pressure diffusion in the fractured basalt layer due to additional pressure from the newly connected surface aquifer. This reaches critically prestressed areas up to a few kilometers away from the wells. During periods of continuous pumping, the reduction of pore pressure in the confined aquifer stops the seismic activity. Our study suggests that this kind of activity may be more common than previously thought and implies that many other cases of small tremors associated with the drilling of water wells may have gone unnoticed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hemiancistrus pankimpuju, new species, and Panaque bathyphilus, new species, are described from the main channel of the upper (Maranon) and middle (Solimoes)Amazon River, respectively. Both species are diagnosed by having a nearly white body, long filamentous extensions of both simple caudal-fin rays, small eyes, absence of an iris operculum and unique combinations of morphometrics. The coloration and morphology of these species, unique within Loricariidae, are hypothesized to be apomorphies associated with life in the dark, turbid depths of the Amazon mainstem. Extreme elongation of the caudal filaments in these and a variety of other main channel catfishes is hypothesized to have a mechanosensory function associated with predator detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)