978 resultados para Waste products.
Resumo:
The circulatory system comprises the blood vascular system and the lymphatic vascular system. These two systems function in parallel. Blood vessels form a closed system that delivers oxygen and nutrients to the tissues and removes waste products from the tissues, while lymphatic vessels are blind-ended tubes that collect extravasated fluid and cells from the tissues and return them back to blood circulation. Development of blood and lymphatic vascular systems occurs in series. Blood vessels are formed via vasculogenesis and angiogenesis whereas lymphatic vessels develop via lymphangiogenesis, after the blood vascular system is already functional. Members of the vascular endothelial growth factor (VEGF) family are regulators of both angiogenesis and lymphangiogenesis, while members of the platelet-derived growth factor (PDGF) family are major mitogens for pericytes and smooth muscle cells and regulate formation of blood vessels. Vascular endothelial growth factor C (VEGF-C) is the major lymphatic growth factor and signaling through its receptor vascular endothelial growth factor receptor 3 (VEGFR-3) is sufficient for lymphangiogenesis in adults. We studied the role of VEGF-C in embryonic lymphangiogenesis and showed that VEGF-C is absolutely required for the formation of lymph sacs from embryonic veins. VEGFR-3 is also required for normal development of the blood vascular system during embryogenesis, as Vegfr3 knockout mice die at mid-gestation due to failure in remodeling of the blood vessels. We showed that sufficient VEGFR-3 signaling in the embryo proper is required for embryonic angiogenesis and in a dosage-sensitive manner for embryonic lymphangiogenesis. Importantly, mice deficient in both VEGFR-3 ligands, Vegfc and Vegfd, developed a normal blood vasculature, suggesting VEGF-C- and VEGF-D- independent functions for VEGFR-3 in the early embryo. Platelet-derived growth factor B (PDGF-B) signals via PDGFR-b and regulates formation of blood vessels by recruiting pericytes and smooth muscle cells around nascent endothelial tubes. We showed that PDGF-B fails to induce lymphangiogenesis when overexpressed in adult mouse skin using adenoviral vectors. However, mouse embryos lacking Pdgfb showed abnormal lymphatic vessels, suggesting that PDGF-B plays a role in lymphatic vessel maturation and separation from blood vessels during embryogenesis. Lymphatic vessels play a key role in immune surveillance, fat absorption and maintenance of fluid homeostasis in the body. However, lymphatic vessels are also involved in various diseases, such as lymphedema and tumor metastasis. These studies elucidate the basic mechanisms of embryonic lymphangiogenesis and add to the knowledge of lymphedema and tumor metastasis treatments by giving novel insights into how lymphatic vessel growth could be induced (in lymphedema) or inhibited (in tumor metastasis).
Resumo:
Poultry grown on litter floors are in contact with their own waste products. The waste material needs to be carefully managed to reduce food safety risks and to provide conditions that are comfortable and safe for the birds. Water activity (Aw) is an important thermodynamic property that has been shown to be more closely related to microbial, chemical and physical properties of natural products than moisture content. In poultry litter, Aw is relevant for understanding microbial activity; litter handling and rheological properties; and relationships between in-shed relative humidity and litter moisture content. We measured the Aw of poultry litter collected throughout a meat chicken grow-out (from fresh pine shavings bedding material to day 52) and over a range of litter moisture content (10–60%). The Aw increased non-linearly from 0.71 to 1.0, and reached a value of 0.95 when litter moisture content was only 22–33%. Accumulation of manure during the grow-out reduced Aw for the same moisture content. These results are relevant for making decisions regarding litter re-use in multiple grow-outs as well as setting targets for litter moisture content to minimise odour, microbial risks and to ensure necessary litter physical conditions are maintained during a grow-out. Methods to predict Aw in poultry litter from moisture content are proposed.
Resumo:
Acute renal failure (ARF) is a clinical syndrome characterized by rapidly decreasing glomerular filtration rate, which results in disturbances in electrolyte- and acid-base homeostasis, derangement of extracellular fluid volume, and retention of nitrogenous waste products, and is often associated with decreased urine output. ARF affects about 5-25% of patients admitted to intensive care units (ICUs), and is linked to high mortality and morbidity rates. In this thesis outcome of critically ill patients with ARF and factors related to outcome were evaluated. A total of 1662 patients from two ICUs and one acute dialysis unit in Helsinki University Hospital were included. In study I the prevalence of ARF was calculated and classified according to two ARF-specific scoring methods, the RIFLE classification and the classification created by Bellomo et al. (2001). Study II evaluated monocyte human histocompatibility leukocyte antigen-DR (HLA-DR) expression and plasma levels of one proinflammatory (interleukin (IL) 6) and two anti-inflammatory (IL-8 and IL-10) cytokines in predicting survival of critically ill ARF patients. Study III investigated serum cystatin C as a marker of renal function in ARF and its power in predicting survival of critically ill ARF patients. Study IV evaluated the effect of intermittent hemodiafiltration (HDF) on myoglobin elimination from plasma in severe rhabdomyolysis. Study V assessed long-term survival and health-related quality of life (HRQoL) in ARF patients. Neither of the ARF-specific scoring methods presented good discriminative power regarding hospital mortality. The maximum RIFLE score for the first three days in the ICU was an independent predictor of hospital mortality. As a marker of renal dysfunction, serum cystatin C failed to show benefit compared with plasma creatinine in detecting ARF or predicting patient survival. Neither cystatin C nor plasma concentrations of IL-6, IL-8, and IL-10, nor monocyte HLA-DR expression were clinically useful in predicting mortality in ARF patients. HDF may be used to clear myoglobin from plasma in rhabdomyolysis, especially if the alkalization of diuresis does not succeed. The long-term survival of patients with ARF was found to be poor. The HRQoL of those who survive is lower than that of the age- and gender-matched general population.
Resumo:
Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)(2.74)). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 +/- 0.5MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 +/- 0.6MPa). The difference in properties is explained in terms of the phase assemblage and microstructure.
Resumo:
This short paper records some measurements made on the Little Sea, a shallow, coastal, acidic lake on Studland Heath, Dorset. The lake, formed about 100 years ago by dunes cutting off a sea inlet, has not received any input of agricultural fertilizers or other waste products for at least the last 30 years. It is a Site of Special Scientific Interest (SSSI). Samples of surface water were taken from the northern and southern ends of the lake at 3-monthly intervals, from July 1995 to April 1996. The first samples in July 1995 were taken during a period of drought; rain, sometimes very heavy, came in late September. With the exception of silicate, potassium and phosphate, there were no large changes in plant nutrient concentrations during the year. The concentration of nitrate-nitrogen was very low (close to the limits of analytical detection), but total phosphorus at ca. 30 mu g per litre was similar to concentrations found in some of the Cumbrian eutrophic lakes. The large number of algal species at low cell/colony concentrations suggested that the lake is mesotrophic. Sodium, chloride and magnesium in the lake water were close to the same proportions as those found in sea water. Dry and wet deposition of sea-salts on the lake surface and its catchment area probably is the major source of sodium, magnesium and chloride ions in the lake, and also accounts for about half of the mean potassium and sulphate concentrations.
Resumo:
This study deals with seasonal variations, natural correlations and similarities of fouling assemblages on exposure panels in the Suez Bay during January 1992 to January 1993. Three main sources of pollutions flow into the bay; industrial waste products, domestic drainage of Suez city and ships' oil and refuse.The fouling assemblages on the test pan els after various periods (1, 2 and 3 months) belonged mainly to the algae (Ulva rigida), polychaetes (Hydroides elegans), Cirripedes (Balanus amphitrite) and amphipods. The fouling at the lst station was relatively more dense than at the 2nd station during the summer and autumn seasons. The lowest productivity was achieved at the 3rd station which was considered less polluted being offshore water. The overall paucity of fouling in the bay is because of the silt covering the submerged surfaces, particularly at the 2nd station, leading to the prevention of the settlements or establishment of fouling organisms. The seasonal changes in the intensity of fouling assemblages on submerged surfaces in seawater seems to be closely related to seasonal variations in water temperature. The great fouling communities on the buoys and long exposure panels showed a remarkable variety of species and density rather than on short term exposures, which were more dense during warmer months.
Resumo:
According to a recent report by the European Commission, within the European Union, the construction and demolition wastes come to at least 450 million tons per year. Roughly 75% of the waste is disposed to landfill, despite its major recycling potential. The bulk constituents of demolition debris are concrete (50-55%) and masonry (30-40%) with only small percentages of other materials such as metals, glass and timber. In Cyprus, at present, recycling of waste materials is practically inexistent and almost the entire demolition waste products are disposed in landfill sites, with all possible economic, technical and environmental impacts. This research paper presents the evaluation and the effective reuse of waste construction materials, such as recycled lime powder (RLP) and recycled concrete aggregates (RCA), disposed to landfill sites in Cyprus, due to the lack of a lucid recycling policy and knowledge. Results show that both RLP and RCA have the potential to produce good quality and robust concrete mixtures both in terms of mechanical and durability performance. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
In an age of depleting oil reserves and increasing energy demand, humanity faces a stalemate between environmentalism and politics, where crude oil is traded at record highs yet the spotlight on being ‘green’ and sustainable is stronger than ever. A key theme on today’s political agenda is energy independence from foreign nations, and the United Kingdom is bracing itself for nuclear renaissance which is hoped will feed the rapacious centralised system that the UK is structured upon. But what if this centralised system was dissembled, and in its place stood dozens of cities which grow and monopolise from their own energy? Rather than one dominant network, would a series of autonomous city-based energy systems not offer a mutually profitable alternative? Bio-Port is a utopian vision of a ‘Free Energy City’ set in Liverpool, where the old dockyards, redundant space, and the Mersey Estuary have been transformed into bio-productive algae farms. Bio-Port Free Energy City is a utopian ideal, where energy is superfluous; in fact so abundant that meters are obsolete. The city functions as an energy generator and thrives from its own product with minimal impact upon the planet it inhabits. Algaculture is the fundamental energy source, where a matrix of algae reactors swamp the abandoned dockyards; which themselves have been further expanded and reclaimed from the River Mersey. Each year, the algae farm is capable of producing over 200 million gallons of bio-fuel, which in-turn can produce enough electricity to power almost 2 million homes. The metabolism of Free-Energy City is circular and holistic, where the waste products of one process are simply the inputs of a new one. Livestock farming – once traditionally a high-carbon countryside exercise has become urbanised. Cattle are located alongside the algae matrix, and waste gases emitted by farmyards and livestock are largely sequestered by algal blooms or anaerobically converted to natural gas. Bio-Port Free Energy City mitigates the imbalances between ecology and urbanity, and exemplifies an environment where nature and the human machine can function productively and in harmony with one another. According to James Lovelock, our population has grown in number to the point where our presence is perceptibly disabling the planet, but in order to reverse the effects of our humanist flaws, it is vital that new eco-urban utopias are realised.
Resumo:
The alkali activation of waste products has become a widespread topic of research, mainly due to environmental benefits. Portland cement and alkali-activated mortar samples were prepared to compare their resistance to silage effluent which contains lactic acid. The mechanism of attack on each sample has also been investigated.
Resumo:
This is a research project by practice, which firstly develops a new material invention derived from natural fibres extracted from waste pineapple leaves; secondly it articulates the contemporary designer’s role in facilitating sustainable solutions through: Insights from my own material invention, PiñatexTM, which integrates the materiality of design with the immateriality of concepts and values Developing a visual model of mapping I began with these questions: ‘What are the challenges in seeking to make a new and sustainable material from the waste products of pineapple agriculture in the Philippines?’ and ‘How can a design practice link elements of materiality (artifacts) with immaterial elements (value systems) in order to improve sustainable social and economic development?’ Significant influences have been the work of Papanek1 (2003), Hawken2 (1999) and Abouleish3 (2008) and in particular the ethical business model initiated by McDonough and Braungart in Cradle to Cradle®4 (2002). My own research project is inspired by the Cradle to Cradle® model. It proposes the development of a new material, PiñatexTM which is derived from natural fibres extracted from waste pineapple leaves and could be used in a wide variety of products that are currently fabricated in leather or petroleum-based materials. The methods have comprised: Contextual reviews; case studies (SEKEM, Cradle to Cradle® and Gawad Kalinga); practical experiments in the field of natural fibres, chemistry, product development, manufacturing and prototyping, leading to an invention and a theoretical model of mapping. In addition, collaboration has taken place across scientific, technological, social, ecological, academic and business fields. The outcome is a new material based on the synchronicity between the pineapple fibres, polymers, resins and coatings specially formulated. The invention of the new material that I developed as a central part of this research by practice has a patent in the national phase (PCT/GB 2011/000802) and is in the first stages of manufacturing, commercial testing and further design input (Summer 2014). The contribution to knowledge is firstly the material, PiñatexTM, which exhibits certain key qualities, namely environmentally non-toxic, biodegradable, income-generating potential and marketability. This is alongside its intrinsic qualities as a textile product: aesthetic potential, durability and stability, which will make it suitable for the accessories, interiors and furnishing markets. The theoretical mapping system Upstream and Downstream forms a secondary contribution.
Resumo:
The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.
Resumo:
Serving the Niagara and surrounding areas for over 120 years, Walker Industries has made its impact not only commercially, but also culturally. Beginning in 1875 with the erection of a stone sawing mill on a property John Walker purchased from the Welland Canal Loan Company. One of the first projects Walker cut stone for was the Merritton Town Hall. In 1882 the business expanded to include Walkers children, changing the name to Walker & Sons. Eventually in 1887 the two eldest sons took control of the business operation and their partnership changed the company’s name to Walker Brothers, the same year the company began operating its first quarry. The quarry was conveniently located alongside the 3rd Welland canal, offering easy access to Toronto and Hamilton. It was also close to the railway system which allowed immediate access to Thorold and Niagara Falls and later access to parts of Ontario and Quebec. The quarry supplied stone to build numerous halls and armouries across Ontario. A use was also found for the ‘waste products’ of cutting the limestone. Leftover stone chips were sent to paper mills, where stone was needed as part of the sulphite pulp process for making paper. Beginning to supply the Ontario Paper Company with stone in 1913, meant not only long, hard, work, but also more profit for the company. Before mechanization, most of the loading and unloading of the stone was done by hand, taking 19 man-hours to load an 18 yard railway car. Mechanization followed in 1947 when the plant became fully mechanized making the work easier and increasing production rates. In 1957 the company moved from its original location and opened the St. Catharines Crushed Stone Plant.
Resumo:
Estudi de la situació dels residus d’aparells elèctrics i electrònics al Gironès reformulant la seva gestió actual, valorant si caldria fer una nova planta, aixà com una campanya de sensibilització social i construcció d’una possible planta intermedià ria de triatge de RAEE per a la comarca del Gironès