940 resultados para Warm-moist weather


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The information on climate variations is essential for the research of many subjects, such as the performance of buildings and agricultural production. However, recorded meteorological data are often incomplete. There may be a limited number of locations recorded, while the number of recorded climatic variables and the time intervals can also be inadequate. Therefore, the hourly data of key weather parameters as required by many building simulation programmes are typically not readily available. To overcome this gap in measured information, several empirical methods and weather data generators have been developed. They generally employ statistical analysis techniques to model the variations of individual climatic variables, while the possible interactions between different weather parameters are largely ignored. Based on a statistical analysis of 10 years historical hourly climatic data over all capital cities in Australia, this paper reports on the finding of strong correlations between several specific weather variables. It is found that there are strong linear correlations between the hourly variations of global solar irradiation (GSI) and dry bulb temperature (DBT), and between the hourly variations of DBT and relative humidity (RH). With an increase in GSI, DBT would generally increase, while the RH tends to decrease. However, no such a clear correlation can be found between the DBT and atmospheric pressure (P), and between the DBT and wind speed. These findings will be useful for the research and practice in building performance simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of weather variability and sunspots in the occurrence of cyanobacteria blooms, were investigated using cyanobacteria cell data collected from the Fred Haigh Dam, Queensland, Australia. Time series generalized linear model and classification and regression (CART) model were used in the analysis. Data on notified cell numbers of cyanobacteria and weather variables over the periods 2001 and 2005 were provided by the Australian Department of Natural Resources and Water, and Australian Bureau of Meteorology, respectively. The results indicate that monthly minimum temperature (relative risk [RR]: 1.13, 95% confidence interval [CI]: 1.02-1.25) and rainfall (RR: 1.11; 95% CI: 1.03-1.20) had a positive association, but relative humidity (RR: 0.94; 95% CI: 0.91-0.98) and wind speed (RR:0.90; 95% CI: 0.82-0.98) were negatively associated with the cyanobacterial numbers, after adjustment for seasonality and auto-correlation. The CART model showed that the cyanobacteria numbers were best described by an interaction between minimum temperature, relative humidity, and sunspot numbers. When minimum temperature exceeded 18%C and relative humidity was under 66%, the number of cyanobacterial cells rose by 2.15-fold. We conclude that the weather variability and sunspot activity may affect cyanobacterial blooms in dams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aims to develop a methodology for designing and conducting a systems engineering analysis to build and fly continuously, day and night, propelled uniquely by solar energy for one week with a 0.25Kg payload consuming 0.5 watt without fuel or pollution. An airplane able to fly autonomously for many days could find many applications. Including coastal or border surveillance, atmospherical and weather research and prediction, environmental, forestry, agricultural, and oceanic monitoring, imaging for the media and real-estate industries, etc. Additional advantages of solar airplanes are their low cost and the simplicity with which they can be launched. For example, in the case of potential forest fire risks during a warm and dry period, swarms of solar airplanes, easily launched with the hand, could efficiently monitor a large surface, reporting rapidly any fire starts. This would allow a fast intervention and thus reduce the cost of such disaster, in terms of human and material losses. At higher dimension, solar HALE platforms are expected to play a major role as communication relays and could replace advantageously satellites in a near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of climate change on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since most of building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. In this paper, the methods used to prepare future weather data for the study of the impact of climate change are reviewed. The advantages and disadvantages of each method are discussed. The inherent relationship between these methods is also illustrated. Based on these discussions and the analysis of Australian historic climatic data, an effective framework and procedure to generate future hourly weather data is presented. It is shown that this method is not only able to deal with different levels of available information regarding the climate change, but also can retain the key characters of a “typical” year weather data for a desired period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local climate is a critical element in the design of energy efficient buildings. In this paper, ten years of historical weather data in Australia's eight capital cities were profiled and analysed to characterize the variations of climatic variables in Australia. The method of descriptive statistics was employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are presented. It was found that although weather variables vary with different locations, there is often a good, nearly linear relation between a weather variable and its cumulative percentage for the majority of middle part of the cumulative curves. By comparing the slopes of these distribution profiles, it may be possible to determine the relative range of changes of the particular weather variables for a given city. The implications of these distribution profiles of key weather variables on energy efficient building design are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave estimated increase in non-external deaths: 75 [(95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research discusses some of the issues encountered while developing a set of WGEN parameters for Chile and advice for others interested in developing WGEN parameters for arid climates. The WGEN program is a commonly used and a valuable research tool; however, it has specific limitations in arid climates that need careful consideration. These limitations are analysed in the context of generating a set of WGEN parameters for Chile. Fourteen to 26 years of precipitation data are used to calculate precipitation parameters for 18 locations in Chile, and 3–8 years of temperature and solar radiation data are analysed to generate parameters for seven of these locations. Results indicate that weather generation parameters in arid regions are sensitive to erroneous or missing precipitation data. Research shows that the WGEN-estimated gamma distribution shape parameter (α) for daily precipitation in arid zones will tend to cluster around discrete values of 0 or 1, masking the high sensitivity of these parameters to additional data. Rather than focus on the length in years when assessing the adequacy of a data record for estimation of precipitation parameters, researchers should focus on the number of wet days in dry months in a data set. Analysis of the WGEN routines for the estimation of temperature and solar radiation parameters indicates that errors can occur when individual ‘months’ have fewer than two wet days in the data set. Recommendations are provided to improve methods for estimation of WGEN parameters in arid climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change mitigation is driving demand for energy-efficient and environmentally conscious commercial buildings in Australia. In the Australian subtropics, high rainfall, warm weather and humidity present unique challenges and opportunities for the architects tasked with designing eco-sensitive projects. The case of the James Street Market in Brisbane’s Fortitude Valley shows that climate-responsive design is an effective approach for reducing the environmental impact of commercial developments. The James Street Market combines climate-responsiveness, environmentally sensitive design strategies and smart planning to create a more sustainable retail precinct. This paper details the design strategies featured in the James Street Market, the project that kicked off a renaissance in climate-responsive commercial building design in Brisbane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heavy rain falls that we have been experiencing have had their impact on the public transport system, especially the ferries. September 2010 was the Brisbane area’s wettest on record, and early to mid October has shaped up much the same. So much so that the South East Queensland’s main water storages, the Wivenhoe and Somerset Dams, which are fed by the Stanley and Brisbane Rivers’ upper catchments, have filled to capacity. SEQ Water consequently released the floodgates on the Wivenhoe Dam for the first time in almost a decade, with bipartisan support of State and Local Governments.