954 resultados para Warm
Resumo:
Fish species of warmwater origin appear in northeastern U.S. coastal waters in the late summer and remain until late fall when the temperate waters cool. The annual abundance and species composition of warm-water species is highly variable from year to year, and these variables may have effects on the trophic dynamics of this region. To understand this variability, records of warm-water fish occurrence were examined in two neighboring temperate areas, Narragansett Bay and Long Island Sound. The most abundant fish species were the same in both areas, and regional abundances peaked in both areas in the middle of September, four weeks after the maximum temperature in the middle of August. On average, abundance of warm-water species increased throughout the years sampled, although this increase can not be said to be exclusively related to temperature. Weekly mean temperatures between the two locations were highly correlated (r= 0.99; P<0.001). The warm-water fish faunas were distinctly different in annual abundances in the two areas for each species by year (1987–2000), and these differences ref lect the variability in the transport processes to temperate estuaries. The results reveal information on the abundance of warm-water fish in relation to trends toward warmer waters in these region
Resumo:
The objective of this monitoring project was to determine the baseline condition for a 960-m long stream reach and its associated streamside zone, which terminates at the confluence with the Deschutes River. This stream reach had been damaged heavily in the February 1996 flood and had also received many years of overuse by livestock grazing. The monitoring project was conducted in July 1997 just after installation of riparian exclosure fencing. Future resurvey of the study area will allow determination of progress made in ecological recovery.
Resumo:
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region.
Resumo:
Precipitation is a difficult variable to understand and predict. In this study, monthly precipitation in California is divided into two classes according to the monthly temperature to better diagnose the atmospheric circulation that causes precipitation, and to illustrate how temperature compounds the precipitation to runoff process.
Resumo:
Wintertime precipitation in the mountains of the western United States during a warm or cool period has a pronounced influence on streamflow. During a warm year, streamflow at intermediate elevations responds more immediately to precipitation events; during a cold year, much of the discharge is delayed until the snow melts in spring and summer. Previous efforts at studying these extremes have been hampered by a limited number and length of observational analyses. In this study, we augment this limited observational record by analyzing a simplified general circulation model.
Resumo:
A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine [1]. This is done by making assumptions for the evolution of the oil temperatures during warm-up and that the oil control ring during downstrokes is fully flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e. pure hydrodynamic lubrication, boundary lubrication and pure asperity contact, non-steady wetting of both inlet and outlet of the piston ring, capability to use all ring face profiles that can be approximated by piece-wise polynomials and, finally, the ability to model the rheology of multi-grade oils. Not surprisingly, the simulations show that by far the most important parameter is the temperature dependence of the oil viscosity. This dependence is subsequently examined further by choosing different oils. The baseline oil is SAE 10W30 and results are compared to those using the SAE 30 and the SAE 10W50 oils.