993 resultados para Wall materials
Resumo:
This paper discusses the development of modular solutions for eco low-cost houses based on a pre-fabricated modular wall system environmentally sustainable, socioeconomically competitive and geared towards developing African nations with a housing deficit. The key point to the research of a modular wall solution is a structural layer complemented with local and materials made by non-specialized workforce. This wall also meets also hydrothermal acoustic and mechanical properties. Thus,the solution also offers good safety and interior comfort conditions to its users while maintaining the flexibility to expand the size of the house. Parameters as dimensions, materials and constructive processes of the existing housing stock were studied. Features such as the family size, typology, different uses, common materials, existing regulations, minimal living conditions, safety and comfort have also been considered to achieve the most efficient solution.
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
Projeto de investigação integrado de International Master in Sustainable Built Environment
Resumo:
Los suelos estabilizados mediante compactación, permiten obtener materiales con ventajas ténicas y economicas en diferentes tipos de obras de ingeniería. Ejemplos de su uso se tiene en bases viales de autopistas, rutas o calles urbanas, pistas de aterrizaje, barreras de contención para enterramientos sanitarios o lagunas de estabilización, apoyos de plateas para fundación de edificios, losas industriales, entre otras aplicaciones. Las fallas en este tipo de construcciones pueden resultar en catástrofes ambientales, sociales y elevadas pérdidas económicas, por lo que resulta de gran importancia optimizar el diseño e incrementar la seguridad de este tipo de construcciones. Las obras con estas características involucran grandes volúmenes y/o superficies que requieren controles sistemáticos durante su desarrollo, a los fines de garantizar el cumplimiento de las propiedades de los materiales establecidos en la etapa de diseño. De esta forma, es necesario contar con ensayos de campo sencillos, confiables y eficientes que permitan identificar propiedades físicas, mecánicas e hidráulicas. Las geoestructuras generadas mediante la compactación del suelo próximo al sector de construcción pueden funcionar adecuadamente, con reducidos costos de material y transporte. Su estabilización puede ejecutarse en forma natural, o con la incorporación de agregados minerales como bentonita, cal o cemento. Estas incorporaciones mejoran las propiedades hidráulicas y mecánicas del material, optimizando el comportamiento requerido para la obra. Para establecer la forma en la que estos minerales modifican el comportamiento del suelo local compactado deben realizarse investigaciones especiales con los materiales involucrados. En el ámbito internacional existen numerosas investigaciones sobre comportamiento de suelos compactados, no obstante, si bien aportan antecedentes para la planificación de estudios locales, sus resultados no pueden trasladarse de manera directa. Las características propias del suelo local constituye la principal variable debido a la diversidad en las propiedades geotécnicas de cada Región. Esta investigación, se focaliza en el empleo de suelos limosos de la formación loéssica de la zona central de Argentina. Los suelos de la llanura cordobesa poseen comportamientos particulares, los cuales son contemplados en los diseños presentados como resutado de las investigaciones internacionales. Esta particularidad se relaciona con su inestabilidad, lo que los clasifica como suelos colapsables. Los resultados obtenidos en este trabajo podrán ser extendidos a una gran superficie de la Provincia de Córdoba y a la Región Pampeana en general, a los fines de establecer recomendaciones de diseño y construcción para la confección de Pliegos de Especificaciones Técnicas de diferentes tipos de obras públicas y privadas. El estudio contempla la ejecución de un plan experimental a escala de laboratorio y campo. Los materiales corresponden a suelo limosos puros, y diferentes agregados tales como bentonita, cal y cemento. Se planifican ensayos para evaluar el desempeño del material, a partir de la confección de muestras preparadas con diferentes condiciones de compactación (energía, humedad y método), y en forma de mezcla con los distintos tipos de agregados. Se realizarán ensayos de permeabilidad en celdas de pared rígida y flexible, junto a ensayos mecánicos de compresión confinada, simple y triaxial. Para el trabajo experimental de campo se prevé la ejecución de terraplenes de prueba instrumentados con tensiómetros e infiltrómetros para evaluar el comportamiento hidraúlico en el tiempo, junto con ensayos de penetración y plato de carga para la caracterización mecánica. En forma conjunta se propone el desarrollo de modelos numéricos de caracterización hidromecánica. Stabilized soils by compaction, produce materials technical and economic advantages in different types of engineering works. For example, road bases in highways, roads or city streets, containment barriers for sanitary landfill or stabilization ponds, foundation support of building, industrial flat, and other applications. Failures can result in environmental catastrophes, social, and economic loss, so it is important to optimize the design and increase the safety of such buildings. These works involve large surfaces that require systematic tests during construction, so it is necessary to have simple field tests, reliable and efficient to identify physical, mechanical and hydraulic properties. The geo-structures generated by local soil compaction have reduced material and transportation costs. Stabilization can be naturally, or with the addition of mineral aggregates as bentonite, lime and cement. These additions improve the hydraulic and mechanical properties of the material. So, special investigations should be conducted with the materials involved. There are many international studies on compacted soils behavior but their results can not be transferred directly due to the particularities of regional soils. For this research silty soils of central Argentina are the main focus. The soils of Córdoba plains are instability, so are classified as collapsible soils. The results obtained in this work may be extended to a large area of the Province of Cordoba and the Pampas region in general, in order to establish design and construction recommendations. The study includes laboratory and field tests. The materials are pure silty soil, and different aggregates such as bentonite, lime and cement. Tests are planned to evaluate the performance. Laboratory includes rigid and flexible wall cells, confined, triaxial and simple compression tests. For field experimental instrumented embankments will be constructed. A numerical hydromechanical model will be developed.
Resumo:
Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.
Value of PET/CT versus contrast-enhanced CT in identifying chest wall invasion (T3) by NSCLC [B-671]
Resumo:
Purpose: To determine the diagnostic value of 18F-FDG PET/CT versus contrastenhanced CT in identifying chest wall invasion by NSCLC. Methods and Materials: The primary selection criterion was a peripheral tumor of any size with contact to the chest wall. A total of 25 patients with pathologically proven NSCLC satisfied these criteria. Chest wall invasion was interpreted upon PET/CT when a frank costal or intercostal 18F-FDG uptake was identified with or without concomitant morphologic alterations. On the other hand, the existence of periosteal rib reaction/erosion, chest wall thickening or obliteration of the pleural fat layer either separately or combined were considered essential diagnostic criteria for disease extension into the chest wall upon contrast-enhanced CT. The results were correlated with the final histological analysis. Results: Among the studied cohort, 13/25 (52%) patients had chest wall invasion consistent with T3 disease. Both PET/CT and contrast-enhanced CT successfully identified 12/13 (92%) of these patients. The single false-negative result was due to parietal pleural invasion. On the other hand, one false-positive result was encountered by PET/CT in a dyspneic patient; whereas, CT analysis revealed false-positive results in six patients. In these patients, periosteal rib reaction (n = 2) or asymmetric enlargement of adjacent chest wall muscles (n = 1) were identified along with an obliterated pleural fat layer (n = 6). The sensitivity, specificity, and accuracy of PET/CT and contrast-enhanced CT were 92, 91 and 92% versus 92, 50 and 72%. Conclusion: 18F-FDG PET/CT is an accurate diagnostic modality in identifying.
Resumo:
Objective: There are only a few established artificial urinary sphincters for treatment of incontinence. We have developed a new device composed by three parts: the actuator, three contractile rings and a control unit. The actuator is made of Nitinol fibers, driven by microprocessor. The fibers are linked to the rings placed around the urethra. They function with alternance in their open and closed position. This concept is called piano concept. With this set-up, the constant compression on the urethra is strongly reduced. Methods: Six male sheep have been used for this study. The sphincter was open each hour for a period of 10 min., to guaranty urination. The bladder was filled with water while one cuff was closed and bladder pressure was monitored. The animals were sacrificed. Two biopsies around two cuffs of each explant and all three cuffs from each explant including urethra were analyzed. Urethra not surrounded by a cuff was taken as control. Results: The pressure exerted by the sphincter around the urethra provided continence. Simulated incontinence occurred at a pressure of 1bar measured on the bladder wall using a pressure probe. The closing force of the cuff was approx. 0·7N. No difference in tissue structure and organization of the urethra with and without artificial sphincter was observed. Conclusions: This device has several advantages compared to other urinary sphincters. It is easy to implant, has no hydraulic nature and reduces ischemic injury of the urethra by the alternance of urethral part compressed. Proof of concept in vivo has been demonstrated. Other studies are planned to determine long-term outcome.
Resumo:
The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.
Resumo:
OBJECTIVES: The objective of this study was to evaluate associations between aortic pulse wave velocity (PWV) and aortic and carotid vessel wall thickness (VWT) using cardiovascular magnetic resonance imaging (MRI) in patients with hypertension as compared with healthy adult volunteers. MATERIALS AND METHODS: Local medical ethics approval was obtained and the participants gave informed consent. Fifteen patients with hypertension (5 men and 10 women; mean [SD] age, 49 [14] years) and 15 age- and sex-matched healthy volunteers were prospectively included and compared. All participants underwent MRI examination for measuring aortic and carotid VWT and aortic PWV with well-validated MRI techniques at 1.5- and 3-T MRI systems: PWV was assessed from velocity-encoded MRI and VWT was assessed by using dual-inversion black-blood gradient-echo imaging techniques. Paired t tests were used for testing differences between the volunteers and the patients and Pearson correlation (r) and univariable and multivariable stepwise linear regression analyses were used to test associations between aortic and carotid arterial wall thickness and stiffness. RESULTS: Mean values for aortic PWV and aortic and carotid VWT (indexed for body surface area [BSA]) were all significantly higher in patients with hypertension as compared with the healthy volunteers (ie, aortic PWV, 7.0 ± 1.4 m/s vs 5.7 ± 1.3 m/s; aortic VWT/BSA, 0.12 ± 0.03 mL/m vs 0.10 ± 0.03 mL/m; carotid VWT/BSA, 0.04 ± 0.01 mL/m vs 0.03 ± 0.01 mL/m; all P < 0.01). Aortic PWV was highly correlated with aortic VWT/BSA (r = 0.76 and P = 0.002 in the patients vs r = 0.63 and P = 0.02 in the volunteers), and in the patients, aortic PWV was moderately correlated with carotid VWT/BSA (r = 0.50; P = 0.04). In the volunteers, correlation between aortic PWV and carotid VWT/BSA was not significant (r = 0.40; P = 0.13). In addition, aortic VWT/BSA was significantly correlated with carotid VWT/BSA, in both the patients (r = 0.60; P = 0.005) and volunteers (r = 0.57; P = 0.007). CONCLUSIONS: In the patients with hypertension and the healthy volunteers, the aortic PWV is associated more strongly with aortic wall thickness than with carotid wall thickness, reflecting site-specific coupling between vascular wall thickness and function.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
Els materials de canvi de fase (PCM) han estat considerats per a l’emmagatzematge tèrmic en edificis des de 1980. Amb la inclusió dels PCM en plaques de guix, guix, formigó o altres materials que s’utilitzen per a cobrir les parets, l’emmagatzematge tèrmic pot ser part de les estructures fins i tot en edificis lleugers. Les noves tècniques de microencapsulació han obert moltes possibilitats en aplicacions per a edificis. El treball que es presenta és el desenvolupament d’un formigó innovador mesclat amb PCM microencapsulat, amb un punt de fusió de 26 oC i una entalpia de canvi de fase de 110 kJ/kg. El primer experiment va ser la inclusió del PCM microencapsulat dins del formigó i la construcció d’una caseta amb aquest nou formigó-PCM. Es va construir una segona caseta al costat de la primera amb les mateixes característiques i orientació però amb formigó convencional que serveix com a referència. Durant els anys 2005 i 2006 es va analitzar el comportament d’ambdues casetes i més tard es va edificar un mur Trombe a la paret sud de totes dues per investigar la seva influència durant la tardor i l’hivern.
Resumo:
[cat]El present treball ofereix una revisió de les pintures murals de la basílica de «Es Cap des Port» (Fornells, Menorca), així com un estudi de caracterització arqueomètrica deIs materials i tècniques per microscòpia òptica, tant amb lupa binocular com amb microscopi petrogràfic mitjançant làmina prima, difracció de raigs X i microscòpia electrònica de rastreig. Els resultats han permès identificar els pigments emprats, així com la seva tècnica d'aplicació. Igualment, han permès caracteritzar els morters i han desvelat l' existència de dos tipus diferents de suport. Malgrat aquestes diferències en els morters, els pigments són sempre els mateixos per a tots els conjunts pictòrics caracteritzats [eng] The present paper offers a revision of the wall paintings found at the early Christian church of 'Es Cap des Port' (Fornells, Menorca). Moreover, the materials and techniques employed have been archaeometrically studied by means of optical microscopy, both with steromicroscope and petrographic microscope by thin section, X-ray diffraction and scanning electron microscopy. The results enable to identify the pigments used, as well as the techniques of application. It has also been possible to characterize the mortars, revealing the existence of two different types of support. In spite of these differences in the mortars, the pigments used are the same ones for all the studied wall paintings
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.