847 resultados para Waiting for Godot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large animals are disproportionately likely to go extinct, and the effects of this on ecosystem processes are unclear. Megaherbivores (weighing over 1000kg) are thought to be particularly effective seed dispersers, yet only a few plant species solely or predominantly adapted for dispersal by megaherbivores have been identified. The reasons for this paradox may be elucidated by examining the ecology of so-called megafaunal fruiting species in Asia, where large-fruited species have been only sparsely researched. We conducted focal tree watches, camera trapping, fruit ageing trials, dung seed counts and germination trials to understand the ecology of Dillenia indica, a large-fruited species thought to be elephant-dispersed, in a tropical moist forest (Buxa Tiger Reserve, India). We find that the initial hardness of the fruit of D.indica ensures that its small (6mm) seeds will primarily be consumed and dispersed by elephants and perhaps other megaherbivores. Elephants removed 63.3% of camera trap-monitored fruits taken by frugivores. If the fruit of D.indica is not removed by a large animal, the seeds of D.indica become available to successively smaller frugivores as its fruits soften. Seeds from both hard and soft fruits are able to germinate, meaning these smaller frugivores may provide a mechanism for dispersal without megaherbivores.Synthesis. Dillenia indica's strategy for dispersal allows it to realize the benefits of dispersal by megaherbivores without becoming fully reliant on these less abundant species. This risk-spreading dispersal behaviour suggests D.indica will be able to persist even if its megafaunal disperser becomes extinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of queue waiting times of jobs submitted to production parallel batch systems is important to provide overall estimates to users and can also help meta-schedulers make scheduling decisions. In this work, we have developed a framework for predicting ranges of queue waiting times for jobs by employing multi-class classification of similar jobs in history. Our hierarchical prediction strategy first predicts the point wait time of a job using dynamic k-Nearest Neighbor (kNN) method. It then performs a multi-class classification using Support Vector Machines (SVMs) among all the classes of the jobs. The probabilities given by the SVM for the class predicted using k-NN and its neighboring classes are used to provide a set of ranges of predicted wait times with probabilities. We have used these predictions and probabilities in a meta-scheduling strategy that distributes jobs to different queues/sites in a multi-queue/grid environment for minimizing wait times of the jobs. Experiments with different production supercomputer job traces show that our prediction strategies can give correct predictions for about 77-87% of the jobs, and also result in about 12% improved accuracy when compared to the next best existing method. Experiments with our meta-scheduling strategy using different production and synthetic job traces for various system sizes, partitioning schemes and different workloads, show that the meta-scheduling strategy gives much improved performance when compared to existing scheduling policies by reducing the overall average queue waiting times of the jobs by about 47%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three men walking through the Stockdale Beck, North West England, UK, waiting for spawners in 1954. This photo is part of a Photo Album that includes pictures from 1935 to 1954.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fifty four purse-seine boats at Mangalore landing centre were observed during different stages of unloading fish catch. It was found that a boat takes 75% of the berthing time to unload an average quantity of 2.4 tons of fish. Further, unloading period and catch were found to be directly related where it was estimated that 5 to 7 minutes are spent in unloading about half a ton of fish to a nearby tempo by employing 9 ± 2 laborers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Two phenomena have become increasingly visible over the past decade: the significant global burden of disease arising from mental illness and the rapid acceleration of mobile phone usage in poorer countries. Mental ill-health accounts for a significant proportion of global disability-adjusted life years (DALYs) and years lived with disability (YLDs), especially in poorer countries where a number of factors combine to exacerbate issues of undertreatment. Yet poorer countries have also witnessed significant investments in, and dramatic expansions of, mobile coverage and usage over the past decade. DEBATE: The conjunction of high levels of mental illness and high levels of mobile phone usage in poorer countries highlights the potential for "mH(2)" interventions--i.e. mHealth (mobile technology-based) mental health interventions--to tackle global mental health challenges. However, global mental health movements and initiatives have yet to engage fully with this potential, partly because of scepticism towards technological solutions in general and partly because existing mH(2) projects in mental health have often taken place in a fragmented, narrowly-focused, and small-scale manner. We argue for a deeper and more sustained engagement with mobile phone technology in the global mental health context, and outline the possible shape of an integrated mH(2) platform for the diagnosis, treatment, and monitoring of mental health. SUMMARY: Existing and developing mH(2) technologies represent an underutilised resource in global mental health. If development, evaluation, and implementation challenges are overcome, an integrated mH2 platform would make significant contributions to mental healthcare in multiple settings and contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigeons and other animals soon learn to wait (pause) after food delivery on periodic-food schedules before resuming the food-rewarded response. Under most conditions the steady-state duration of the average waiting time, t, is a linear function of the typical interfood interval. We describe three experiments designed to explore the limits of this process. In all experiments, t was associated with one key color and the subsequent food delay, T, with another. In the first experiment, we compared the relation between t (waiting time) and T (food delay) under two conditions: when T was held constant, and when T was an inverse function of t. The pigeons could maximize the rate of food delivery under the first condition by setting t to a consistently short value; optimal behavior under the second condition required a linear relation with unit slope between t and T. Despite this difference in optimal policy, the pigeons in both cases showed the same linear relation, with slope less than one, between t and T. This result was confirmed in a second parametric experiment that added a third condition, in which T + t was held constant. Linear waiting appears to be an obligatory rule for pigeons. In a third experiment we arranged for a multiplicative relation between t and T (positive feedback), and produced either very short or very long waiting times as predicted by a quasi-dynamic model in which waiting time is strongly determined by the just-preceding food delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decisions animals make about how long to wait between activities can determine the success of diverse behaviours such as foraging, group formation or risk avoidance. Remarkably, for diverse animal species, including humans, spontaneous patterns of waiting times show random ‘burstiness’ that appears scale-invariant across a broad set of scales. However, a general theory linking this phenomenon across the animal kingdom currently lacks an ecological basis. Here, we demonstrate from tracking the activities of 15 sympatric predator species (cephalopods, sharks, skates and teleosts) under natural and controlled conditions that bursty waiting times are an intrinsic spontaneous behaviour well approximated by heavy-tailed (power-law) models over data ranges up to four orders of magnitude. Scaling exponents quantifying ratios of frequent short to rare very long waits are species-specific, being determined by traits such as foraging mode (active versus ambush predation), body size and prey preference. A stochastic–deterministic decision model reproduced the empirical waiting time scaling and species-specific exponents, indicating that apparently complex scaling can emerge from simple decisions. Results indicate temporal power-law scaling is a behavioural ‘rule of thumb’ that is tuned to species’ ecological traits, implying a common pattern may have naturally evolved that optimizes move–wait decisions in less predictable natural environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper introduces a new modeling approach that represents the waiting times in an Accident and Emergency (A&E) Department in a UK based National Health Service (NHS) hospital. The technique uses Bayesian networks to capture the heterogeneity of arriving patients by representing how patient covariates interact to influence their waiting times in the department. Such waiting times have been reviewed by the NHS as a means of investigating the efficiency of A&E departments (Emergency Rooms) and how they operate. As a result activity targets are now established based on the patient total waiting times with much emphasis on trolley waits.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete Conditional Phase-type (DC-Ph) models are a family of models which represent skewed survival data conditioned on specific inter-related discrete variables. The survival data is modeled using a Coxian phase-type distribution which is associated with the inter-related variables using a range of possible data mining approaches such as Bayesian networks (BNs), the Naïve Bayes Classification method and classification regression trees. This paper utilizes the Discrete Conditional Phase-type model (DC-Ph) to explore the modeling of patient waiting times in an Accident and Emergency Department of a UK hospital. The resulting DC-Ph model takes on the form of the Coxian phase-type distribution conditioned on the outcome of a logistic regression model.