919 resultados para WBAN Bluetooth Wearable Sensors Cupid RTOS RTX RL-ARM cortex-m4 WSN parkinson
Resumo:
We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.
Resumo:
A child's natural gait pattern may be affected by the gait laboratory environment. Wearable devices using body-worn sensors have been developed for gait analysis. The purpose of this study was to validate and explore the use of foot-worn inertial sensors for the measurement of selected spatio-temporal parameters, based on the 3D foot trajectory, in independently walking children with cerebral palsy (CP). We performed a case control study with 14 children with CP aged 6-15 years old and 15 age-matched controls. Accuracy and precision of the foot-worn device were measured using an optical motion capture system as the reference system. Mean accuracy±precision for both groups was 3.4±4.6cm for stride length, 4.3±4.2cm/s for speed and 0.5±2.9° for strike angle. Longer stance and shorter swing phases with an increase in double support were observed in children with CP (p=0.001). Stride length, speed and peak angular velocity during swing were decreased in paretic limbs, with significant differences in strike and lift-off angles. Children with cerebral palsy showed significantly higher inter-stride variability (measured by their coefficient of variation) for speed, stride length, swing and stance. During turning trajectories speed and stride length decreased significantly (p<0.01) for both groups, whereas stance increased significantly (p<0.01) in CP children only. Foot-worn inertial sensors allowed us to analyze gait spatiotemporal data outside a laboratory environment with good accuracy and precision and congruent results with what is known of gait variations during linear walking in children with CP.
Resumo:
This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system were compared to an optical motion capture system as reference. Its repeatability across measurements (test-retest reliability) was also evaluated. Measurements were performed in 10 young (mean age 26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-shaped and 8-shaped walking trials, and then a 6-min walking test (6MWT). A total of 974 gait cycles were used to compare gait parameters with the reference system. Mean accuracy±precision was 1.5±6.8cm for stride length, 1.4±5.6cm/s for stride velocity, 1.9±2.0cm for foot clearance, and 1.6±6.1° for turning angle. Difference in gait performance was observed between young and elderly volunteers during the 6MWT particularly in foot clearance. The proposed method allows to analyze various aspects of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is lightweight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait outside of the lab environment.
Resumo:
Monitoring of posture allocations and activities enables accurate estimation of energy expenditure and may aid in obesity prevention and treatment. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This paper presents a novel wearable sensor, which is capable of very accurate recognition of common postures and activities. The patterns of heel acceleration and plantar pressure uniquely characterize postures and typical activities while requiring minimal preprocessing and no feature extraction. The shoe sensor was tested in nine adults performing sitting and standing postures and while walking, running, stair ascent/descent and cycling. Support vector machines (SVMs) were used for classification. A fourfold validation of a six-class subject-independent group model showed 95.2% average accuracy of posture/activity classification on full sensor set and over 98% on optimized sensor set. Using a combination of acceleration/pressure also enabled a pronounced reduction of the sampling frequency (25 to 1 Hz) without significant loss of accuracy (98% versus 93%). Subjects had shoe sizes (US) M9.5-11 and W7-9 and body mass index from 18.1 to 39.4 kg/m2 and thus suggesting that the device can be used by individuals with varying anthropometric characteristics.
Resumo:
This study aims to design a wearable system for kinetics measurement of multi-segment foot joints in long-distance walking and to investigate its suitability for clinical evaluations. The wearable system consisted of inertial sensors (3D gyroscopes and 3D accelerometers) on toes, forefoot, hindfoot, and shank, and a plantar pressure insole. After calibration in a laboratory, 10 healthy elderly subjects and 12 patients with ankle osteoarthritis walked 50m twice wearing this system. Using inverse dynamics, 3D forces, moments, and power were calculated in the joint sections among toes, forefoot, hindfoot, and shank. Compared to those we previously estimated for a one-segment foot model, the sagittal and transverse moments and power in the ankle joint, as measured via multi-segment foot model, showed a normalized RMS difference of less than 11%, 14%, and 13%, respectively, for healthy subjects, and 13%, 15%, and 14%, for patients. Similar to our previous study, the coronal moments were not analyzed. Maxima-minima values of anterior-posterior and vertical force, sagittal moment, and power in shank-hindfoot and hindfoot-forefoot joints were significantly different between patients and healthy subjects. Except for power, the inter-subject repeatability of these parameters was CMC>0.90 for healthy subjects and CMC>0.70 for patients. Repeatability of these parameters was lower for the forefoot-toes joint. The proposed measurement system estimated multi-segment foot joints kinetics with acceptable repeatability but showed difference, compared to those previously estimated for the one-segment foot model. These parameters also could distinguish patients from healthy subjects. Thus, this system is suggested for outcome evaluations of foot treatments.
Resumo:
Three-dimensional analysis of the entire sequence in ski jumping is recommended when studying the kinematics or evaluating performance. Camera-based systems which allow three-dimensional kinematics measurement are complex to set-up and require extensive post-processing, usually limiting ski jumping analyses to small numbers of jumps. In this study, a simple method using a wearable inertial sensors-based system is described to measure the orientation of the lower-body segments (sacrum, thighs, shanks) and skis during the entire jump sequence. This new method combines the fusion of inertial signals and biomechanical constraints of ski jumping. Its performance was evaluated in terms of validity and sensitivity to different performances based on 22 athletes monitored during daily training. The validity of the method was assessed by comparing the inclination of the ski and the slope at landing point and reported an error of -0.2±4.8°. The validity was also assessed by comparison of characteristic angles obtained with the proposed system and reference values in the literature; the differences were smaller than 6° for 75% of the angles and smaller than 15° for 90% of the angles. The sensitivity to different performances was evaluated by comparing the angles between two groups of athletes with different jump lengths and by assessing the association between angles and jump lengths. The differences of technique observed between athletes and the associations with jumps length agreed with the literature. In conclusion, these results suggest that this system is a promising tool for a generalization of three-dimensional kinematics analysis in ski jumping.
Resumo:
Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm · s(-1) on mean cycle velocity and an RMS difference of 11.3 cm · s(-1) in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique.
Resumo:
INTRODUCTION: In alpine skiing, chronometry analysis is currently the most common tool to assess performance. It is widely used to rank competitors during races, as well as to manage athletes training and to evaluate material. Usually, this measurement is accurately realized using timing cells. Nevertheless, these devices are too complex and expensive to allow chronometry of every gates crossing. On the other side, differential GPS can be used for measuring gate crossing time (Waegli et al). However, this is complex (e.g. recording gate position with GPS) and mainly used in research applications. The aim of the study was to propose a wearable system to time gates crossing during alpine skiing slalom (SL), which is suitable for routine uses. METHODS: The proposed system was composed of a 3D accelerometer (ADXL320®, Analog Device, USA) placed at the sacrum of the athlete, a matrix of force sensors (Flexiforce®, Tekscan, USA) fixed on the right shin guard and a data logger (Physilog®, BioAGM, Switzerland). The sensors were sampled at 500 Hz. The crossing time were calculated in two phases. First, the accelerometer was used to detect the curves by considering the maximum of the mediolateral peak acceleration. Then, the force sensors were used to detect the impacts with the gates by considering maximum force variation. In case of non impact, the detection was realized based on the acceleration and features measured at the other gates. In order to assess the efficiency of the system, two different SL were monitored twice for two world cup level skiers, a male SL expert and a female downhill expert. RESULTS AND DISCUSSION: The combination of the accelerometer and force sensors allowed to clearly identify the gate crossing times. When comparing the runs of the SL expert and the downhill expert, we noticed that the SL expert was faster. For example for the first SL, the overall difference between the best run of each athlete was of 5.47s. At each gate, the SL expert increased the time difference slower at the beginning (0.27s/gate) than at the end (0.34s/gate). Furthermore, when comparing the runs of the SL expert, a maximum time difference of 20ms at each gate was noticed. This showed high repeatability skills of the SL expert. In opposite, the downhill expert with a maximum difference time of 1s at each gate was clearly less repeatable. Both skiers were not disturbed by the system. CONCLUSION: This study proposed a new wearable system to automatically time gates crossing during alpine skiing slalom combining force and accelerometer sensors. The system was evaluated with two professional world cup skiers and showed a high potential. This system could be extended to time other parameters. REFERENCES Waegli A, Skaloud J (2007). Inside GNSS, Spring, 24-34.
Resumo:
This work proposes a fully-digital interface circuit for the measurement of inductive sensors using a low-cost microcontroller (µC) and without any intermediate active circuit. Apart from the µC and the sensor, the circuit just requires an external resistor and a reference inductance so that two RL circuits with a high-pass filter (HPF) topology are formed. The µC appropriately excites such RL circuits in order to measure the discharging time of the voltage across each inductance (i.e. sensing and reference) and then it uses such discharging times to estimate the sensor inductance. Experimental tests using a commercial µC show a non-linearity error (NLE) lower than 0.5%FSS (Full-Scale Span) when measuring inductances from 1 mH to 10 mH, and from 10 mH to 100 mH.
Resumo:
The power is still today an issue in wearable computing applications. The aim of the present paper is to raise awareness of the power consumption of wearable computing devices in specific scenarios to be able in the future to design energy efficient wireless sensors for context recognition in wearable computing applications. The approach is based on a hardware study. The objective of this paper is to analyze and compare the total power consumption of three representative wearable computing devices in realistic scenarios such as Display, Speaker, Camera and microphone, Transfer by Wi-Fi, Monitoring outdoor physical activity and Pedometer. A scenario based energy model is also developed. The Samsung Galaxy Nexus I9250 smartphone, the Vuzix M100 Smart Glasses and the SimValley Smartwatch AW-420.RX are the three devices representative of their form factors. The power consumption is measured using PowerTutor, an android energy profiler application with logging option and using unknown parameters so it is adjusted with the USB meter. The result shows that the screen size is the main parameter influencing the power consumption. The power consumption for an identical scenario varies depending on the wearable devices meaning that others components, parameters or processes might impact on the power consumption and further study is needed to explain these variations. This paper also shows that different inputs (touchscreen is more efficient than buttons controls) and outputs (speaker sensor is more efficient than display sensor) impact the energy consumption in different way. This paper gives recommendations to reduce the energy consumption in healthcare wearable computing application using the energy model.
Resumo:
This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.
Resumo:
Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task specifically in the case of implanted devices such as pacemakers, extending the lifetime of sensor nodes in WBANs is one of the greatest challenges. To achieve this goal, WBAN systems employ low-power communication transceivers and low duty cycle Medium Access Control (MAC) protocols. Although, currently used MAC protocols are able to reduce the energy consumption of devices for transmission and reception, yet they are still unable to offer an ultimate energy self-sustaining solution for low-power MAC protocols. This paper proposes to utilize energy harvesting technologies in low-power MAC protocols. This novel approach can further reduce energy consumption of devices in WBAN systems.
Resumo:
Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems.
Resumo:
The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.