987 resultados para WATER CHANNELS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two copper-organic framework supramolecular assemblies of p-sulfonatocalix[4]arene and 1,10-phenanthroline Cu-2[C12H8N2][C28H20S4O16][H2O](23.5) (1) and Cu-3[C12H8N2](3)[C28H19S4O16]Cl[H2O](17.6) (2) were obtained by pH-dependent synthesis at room temperature. Both structures show ID water-filled channels (rectangular shape in I and triangular in 2) with the solvent-accessible volume occupying 30.8% (1) and 24.2% (2) of the unit-cell volume, respectively. The calixarene molecules in both structures assume analogous cone shapes of C-2 nu symmetry instead of the conventional C-4 nu symmetry. Their connecting to different amounts of copper/phenanthroline cations leads to the formation of different structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hemiancistrus pankimpuju, new species, and Panaque bathyphilus, new species, are described from the main channel of the upper (Maranon) and middle (Solimoes)Amazon River, respectively. Both species are diagnosed by having a nearly white body, long filamentous extensions of both simple caudal-fin rays, small eyes, absence of an iris operculum and unique combinations of morphometrics. The coloration and morphology of these species, unique within Loricariidae, are hypothesized to be apomorphies associated with life in the dark, turbid depths of the Amazon mainstem. Extreme elongation of the caudal filaments in these and a variety of other main channel catfishes is hypothesized to have a mechanosensory function associated with predator detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium ions are widely accepted as critically important in responses of neurons to a stimulus. We have show previously the central involvement of angiotensin II (ANGII) in water intake. This study determined whether voltage-dependent calcium channels are involved in ANGII-induced behavioral drinking implicating nitrergic mechanism. The antidipsogenic actions of L-type calcium channel antagonists nifedipine, on ANGII-induced drinking behavior were studied when it is injected into the median preoptic nucleus (MnPO). The influence of nitric oxide (NO) on nifedipine antidipsogenic action was also studied by utilizing the N-W-nitro-L-arginine methyl ester (L-NAME) a constitutive nitric oxide synthase inhibitor constitutive (cNOSI) and 7-nitroindazol (7-NIT) a specific neuronal nitric oxide synthase inhibitor (nNOSI) and L-arginine a NO donor. Rats 200-250 g, with cannulae implanted into MnPO, pre-treated into MnPO with either nifedipine, followed by ANGII, drank significantly less water than controls during the first 15 min after injection. However, L-NAME potentiated the dipsogenic effect of ANGII that is blocked by prior injection of nifedipine and L-arginine. 7-NIT injected prior to ANGII into MnPO also potentiated the dipsogenic effect of ANGII but with a less intensity than L-NAME that it is also blocked by prior injection of nifedipine. The results described in this paper provide evidence that calcium channels play important roles in the ANGII-induced behavioral water intake. The structures containing NO in the brain such as MnPO include both endothelial cells and neurons might be responsible for the influence of nifedipine on dipsogenic effect of ANGII. These data shows the correlation between L-type calcium channel and a free radical gas NO produced endogenously from amino acids L-arginine by endothelial and neuronal NO synthase in the control of ANGII-dipsogenic effect. This suggests that an L-type calcium channel participates in both short- and longer-term neuronal actions of ANGII by nitrergic way. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assuming a channelized drainage system in steady state, we investigate the influence of enhanced surface melting on the water pressure in subglacial channels, compared to that of changes in conduit geometry, ice rheology and catchment variations. The analysis is carried out for a specific part of the western Greenland ice-sheet margin between 66 degrees N and 66 degrees 30' N using new high-resolution digital elevation models of the subglacial topography and the ice-sheet surface, based on an airborne ice-penetrating radar survey in 2003 and satellite repeat-track interferometric synthetic aperture radar analysis of European Remote-sensing Satellite 1 and 2 (ERS-1/-2) imagery, respectively. The water pressure is calculated up-glacier along a likely subglacial channel at distances of 1, 5 and 9 km from the outlet at the ice margin, using a modified version of Rothlisberger's equation. Our results show that for the margin of the western Greenland ice sheet, the water pressure in subglacial channels is not sensitive to realistic variations in catchment size and mean surface water input compared to small changes in conduit geometry and ice rheology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Root cortical and stelar protoplasts were isolated from maize (Zea mays L.) plants that were either well watered or water stressed, and the patch-clamp technique was used to investigate their plasma membrane K+ channel activity. In the root cortex water stress did not significantly affect inward- or outward-rectifying K+ conductances relative to those observed in well-watered plants. In contrast, water stress significantly reduced the magnitude of the outward-rectifying K+ current in the root stele but had little effect on the inward-rectifying K+ current. Pretreating well-watered plants with abscisic acid also significantly affected K+ currents in a way that was consistent with abscisic acid mediating, at least in part, the response of roots to water stress. It is proposed that the K+ channels underlying the K+ currents in the root stelar cells represent pathways that allow K+ exchange between the root symplasm and xylem apoplast. It is suggested that the regulation of K+ channel activity in the root in response to water stress could be part of an important adaptation of the plant to survive drying soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

cover-title,

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The μO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na+ current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na+ currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the μO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small β-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone “loops” between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known δ- and ω-conotoxins, which along with the μO-conotoxins are members of the O superfamily. Loop 2 of ω-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous titanium dioxide synthesized with a bicontinuous surfactant template is a promising method that leads to a high active surface area electrode. The template used is based on a water/isooctane/dioctyl sodium sulfosuccinate salt together with lecithin. Several parameters were varied during the synthesis to understand and optimize channel formation mechanisms. The material is patterned in stacked conical channels, widening towards the centre of the grains. The active surface area increased by 116% when the concentration of alkoxide precursors was decreased and increased by 241% when the template formation temperature was decreased to 10C. Increasing the oil phase viscosity tends to widen the pore aperture, thus decreasing the overall active surface area. Changing the phase proportions alters the microemulsion integrity and disrupts channel formation.