60 resultados para Voyager
Resumo:
Minttu Hurmeen esitys Asiantuntijaseminaarissa Helsingissä 13.2.2014
Resumo:
Esitys SYN-tapaamisessa 8.10.2014
Resumo:
But : La radiothérapie (RT) est disponible seulement dans les grandes villes au Québec. Les patients atteints de cancer vivant en zone rurale doivent voyager pour obtenir ces soins. Toute proportion gardée, moins de ces patients accèdent à la RT. L’accessibilité serait améliorée en instaurant de petits centres de RT qui dépendraient de la télémédecine (téléRT). Cette étude tente (1) de décrire un modèle (population visée et technologie) réaliste de téléRT; (2) d’en estimer les coûts, comparativement à la situation actuelle où les patients voyagent (itineRT). Méthode : (1) À l’aide de données probantes, le modèle de téléRT a été développé selon des critères de : faisabilité, sécurité, absence de transfert des patients et minimisation du personnel. (2) Les coûts ont été estimés du point de vue du payeur unique en utilisant une méthode publiée qui tient compte des coûts en capitaux, de la main d’oeuvre et des frais généraux. Résultats : (1) Le modèle de téléRT proposé se limiterait aux traitements palliatifs à 250 patients par année. (2) Les coûts sont de 5918$/patient (95% I.C. 4985 à 7095$) pour téléRT comparativement à 4541$/patient (95%I.C. 4351 à 4739$) pour itineRT. Les coûts annuels de téléRT sont de 1,48 M$ (d.s. 0,6 M$), avec une augmentation des coûts nets de seulement 0,54 M$ (d.s. 0,26 M$) comparativement à itineRT. Si on modifiait certaines conditions, le service de téléRT pourrait s’étendre au traitement curatif du cancer de prostate et du sein, à coûts similaires à itineRT. Conclusion : Ce modèle de téléRT pourrait améliorer l’accessibilité et l’équité aux soins, à des coûts modestes.
Resumo:
Étude de cas / Case study
Resumo:
The theory of deterministic chaos is used to study the three rings A, B, and C of Saturn and the French and Cassini divisions in between them. The data set comprises Voyager photopolarimeter measurements. The existence of spatially distributed strange attractors is shown, implying that the system is open, dissipative, nonequilibrium, and non-Markovian in character.
Resumo:
Consumption of green leafy vegetables is associated with reduced risk of several types of cancer and cardiovascular disease. These beneficial effects are attributed to a range of phytochemicals including flavonoids and glucosinolates, both of which are found in high levels in Brassicaceous crops. Rocket is the general name attributed to cultivars of Eruca sativa and Diplotaxis tenufolia, known as salad rocket and wild rocket, respectively. We have shown that different light levels during the cultivation period of these crops have a significant impact on the levels of flavonoids present in the crop at harvest, with over 15-fold increase achieved in quercetin, isorhamnetin, and cyanidin in high light conditions. Postharvest storage further affects the levels of both flavonoids and glucosinolates, with cyanidin increasing during shelf life and some glucosinolates, such as glucoiberverin, being reduced over the same storage period. In vitro assays using human colon cell lines demonstrate that glucosinolate-rich extracts of Eruca sativa cv. Sky, but not Diplotaxis tenufolia cv. Voyager, confer significant resistance to oxidative stress on the cells, which is indicative of the chemoprotective properties of the leaves from this species. Our findings indicate that both pre and postharvest environment and genotypic selection, when developing new lines of Brassicaceous vegetables, are important considerations with the goal of improving human nutrition and health.
Resumo:
Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.
Resumo:
Long-duration observations of Neptune’s brightness in two visible wavelengths provide a disk-averaged estimate of its atmospheric aerosol. Brightness variations were previously associated with the 11-year solar cycle, through solar-modulated mechanisms linked with either ultra-violet (UV) or galactic cosmic ray (GCR) effects on atmospheric particles. Here we use a recently extended brightness dataset (1972-2014), with physically realistic modelling to show that rather than alternatives, UV and GCR are likely to be modulating Neptune’s atmosphere in combination. The importance of GCR is further supported by the response of Neptune's atmosphere to an intermittent 1.5 to 1.9 year periodicity, which occurred preferentially in GCR (not UV) during the mid-1980s. This periodicity was detected both at Earth, and in GCR measured by Voyager 2, then near Neptune. A similar coincident variability in Neptune’s brightness suggests nucleation onto GCR ions. Both GCR and UV mechanisms may occur more rapidly than the subsequent atmospheric particle transport.
Resumo:
O objetivo deste trabalho foi avaliar as características físico-químicas, a qualidade nutricional e a suscetibilidade ao esverdeamento pós-colheita de tubérculos de cultivares de batata. Utilizou-se o delineamento experimental de blocos ao acaso, com cinco repetições. Os tratamentos consistiram de 11 cultivares (Ágata, Ambra, Annabelle, Asterix, Atlantic, Cupido, Daisy, Fontane, Innovator, Markies e Voyager). As cultivares Ágata, Ambra, Annabelle, Cupido e Voyager apresentam tubérculos com polpa de menor firmeza (6,82 a 8,25 N) e baixos teores de matéria seca (14,46 a 17,57%), carboidratos (10,97 a 12,51%) e amido (10,21 a 12,26%), adequados para o mercado fresco, a preparação de massas e o uso culinário. Já as cultivares Atlantic, Fontane e Innovator apresentam polpa firme (9,14 a 9,55 N) e elevados teores de matéria seca (19,68 a 21,63%), carboidratos (14,49 a 15,90%) e amido (14,29 a 15,74%), adequados para fritura. As cultivares Asterix e Markies apresentam teores intermediários dessas características e são indicadas para o preparo de massas e fritura. As cultivares Innovator e Markies apresentam melhor qualidade nutricional, com elevados teores de minerais (P, K, Mg, Cu e Mn) e de proteína, enquanto as cultivares Ágata e Ambra apresentam menor qualidade nutricional e proteica. A cultivar Voyager apresenta maior esverdeamento pós-colheita que as cultivares Annabelle, Fontane, Markies, Ambra e Atlantic.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the 'shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of 'propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial 'streaks' seen in the F ring. The related 'thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).
Resumo:
The system formed by the F ring and two close satellites, Prometheus and Pandora, has been analysed since the time that Voyager visited the planet Saturn. During the ring plane crossing in 1995 the satellites were found in different positions as predicted by the Voyager data. Besides the mutual effects of Prometheus and Pandora, they are also disturbed by a massive F ring. Showalter et al. [Icarus 100 (1992) 394] proposed that, the core of the ring has a mass which corresponds to a moonlet varying in size from 15 to 70 kin in radius which can prevent the ring from spreading due to dissipative forces, such as Poynting-Robertson drag and collisions. We have divided this work into two parts. Firstly we analysed the secular interactions between Prometheus-Pandora and a massive F ring using the secular theory. Our results show the variation in eccentricity and inclination of the satellites and the F ring taking into account a massive ring corresponding to a moonlet of different sizes. There is also a population of dust particles in the ring in the company of moonlets at different sizes [Icarus 109 (1997) 304]. We also analysed the behaviour of these particles under the effects of the Poynting-Robertson drag and radiation pressure. Our results show that the time scale proposed for a dust particle to leave the ring is much shorter than predicted before even in the presence of a coorbital moonlet. This result does not agree with the confinement model proposed by Dermott et al. [Nature 284 (1980) 309]. In 2004, Cassini mission will perform repeated observations of the whole system, including observations of the satellites and the F ring environment. These data will help us to better understand this system. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Some Voyager images showed that the F ring of Saturn is composed of at least four separate, non-intersecting, strands covering about 45 degrees in longitude. According to Murray et al. [Murray, C.D., Gordon, M., Giuliatti Winter, S.M. Unraveling the strands of Saturn's F ring. Icarus 129, 304, 1997.] this structure may be caused by undetected satellites embedded in the gaps.Due to precession, the satellites Prometheus and Pandora and the ring particles can experience periodic close encounters. Giuliatti Winter et al. [Giuliatti Winter, S.M, Murray, C.D., Gordon, M. Perturbations to Saturn's F-ring strands at their closest approach to Prometheus. Plan. Space Sciences, 48, 817, 2000.] analysed the behaviour of these four strands at closest approach with the satellite Prometheus. Their work suggests that Prometheus can induce the ring particles to scatter in the direction of the planet, thus increasing the population of small bodies in this region.In this work we analysed the effects of Prometheus on the radial structure of Saturn's F ring during the Voyager and early Cassini epochs. Our results show that at Voyager epoch Prometheus, and also Pandora, had a negligible influence in the strands. However, during the Cassini encounter Prometheus could affect the strands significantly, scattering particles of the inner strand in the direction of the planet. This process can contribute to the replenishment of material in the region between the F ring and the A ring, where two rings have recently been discovered [Porco, C. et al. Cassini imaging science. Initial results on Saturn's rings and small Satellites. Science, 307, 1226, 2005].We also analyse the behaviour of undetected satellites under the effects of these two satellites by computing the Lyapunov Characteristic Exponent. Our results show that these satellites have a chaotic behaviour which leads to a much more complex scenario. The new satellite S/2004 S6 also presents a chaotic behaviour with can alter the dynamic of the system, since this satellite crosses the orbit of the strands. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Saturn's F ring, which lies 3,400 km beyond the edge of the main ring system, was discovered by the Pioneer 11 spacecraft(1) in 1979. It is a narrow, eccentric ring which shows an unusual 'braided' appearance in several Voyager 1 images' obtained in 1980, although it appears more regular in images from Voyager 2 obtained nine months later(3). The discovery of the moons Pandora and Prometheus orbiting on either side of the ring provided a partial explanation for some of the observed features(4). Recent observations of Prometheus(5,6) by the Hubble Space Telescope show, surprisingly, that it is lagging behind its expected position by similar to 20 degrees. By modelling the dynamical evolution of the entire Prometheus-F ring-Pandora system, we show here that Prometheus probably encountered the core of the F ring in 1994 and that it may still be entering parts of the ring once per orbit. Collisions with objects in the F ring provide a plausible explanation for the observed lag and imply that the mass of the F ring is probably less than 25% that of Prometheus.
Resumo:
Image photometry reveals that the F ring is approximately twice as bright during the Cassini tour as it was during the Voyager flybys of 1980 and 1981. It is also three times as wide and has a higher integrated optical depth. We have performed photometric measurements of more than 4800 images of Saturn's F ring taken over a 5-year period with Cassini's Narrow Angle Camera. We show that the ring is not optically thin in many observing geometries and apply a photometric model based on single-scattering in the presence of shadowing and obscuration, deriving a mean effective optical depth tau approximate to 0.033. Stellar occultation data from Voyager PPS and Cassini VIMS validate both the optical depth and the width measurements. In contrast to this decades-scale change, the baseline properties of the F ring have not changed significantly from 2004 to 2009. However, we have investigated one major, bright feature that appeared in the ring in late 2006. This transient feature increased the ring's overall mean brightness by 84% and decayed with a half-life of 91 days. (c) 2012 Elsevier B.V. All rights reserved.