995 resultados para Volcanic ash, tuff, etc.
Resumo:
Air-fall volcanic ash recovered at Deep Sea Drilling Project Sites 541, 542, and 543 on and east of the toe of the Barbados Ridge delineate middle and late Miocene, early Pliocene, and Pleistocene-Quaternary pulses of explosive volcanism in the Lesser Antilles arc. The ash beds at Site 541 allow precise correlation of intervals repeated by a probable reverse fault at this convergent margin.
Resumo:
In this study of volcanic ash retrieved from Shatsky Rise during Ocean Drilling Program Leg 198, the texture and composition of the volcanic components (glass and crystals) were used to fingerprint ash layers for detailed correlation. Correlations among ash layers in holes drilled at the same site as well as between sites, including sites on different parts (highs) of the rise, were tested. Although high-to-high correlations failed, intrahigh correlations were more successful. Our data suggest a significantly different source for some pyroclastic debris, especially at Site 1208, possibly associated with pumice rafts carried northward from the Izu-Bonin arc by the Kuroshio Current. Other ashes are consistent with rhyolitic to dacitic air fall ash from Asian arc volcanoes. We were not able to texturally distinguish between air fall ash and pumice-raft fallout but suspect that the latter is associated with higher percentages of vesiculated ash components, as we demonstrate occur in more proximal Izu-Bonin pyroclastic deposits.
Resumo:
During Leg 124, off the Philippines, volcanic material was recovered in deep-sea sediments dating from the late Oligocene in the Celebes Sea Basin, and from the early Miocene in the Sulu Sea Basin. Chemical and petrological studies of fallout ash deposits are used to characterize volcanic pulses and to determine their possible origin. All of the glass and mineral compositions belong to medium-K and high-K calc-alkaline arc-related magmatic suites including high-Al basalts, pyroxene-hornblende andesites, dacites, and rhyolites. Late Oligocene and early Miocene products may have originated from the Sunda arc or from the Sabah-Zamboanga old Sulu arc. Late early Miocene Sulu Sea tuffs originated from the Cagayan arc, whereas early late Miocene fallout ashes are attributed to the Sulu arc. A complex magmatic production is distinguished in the Plio-Quaternary with three sequences of basic to acidic lava suites. Early Pliocene strata registered an important activity in both Celebes Sea and Sulu Sea areas, from the newly born Sangihe arc (low-alumina andesite series) and from the Sulu, Zamboanga, and Negros arcs (high-alumina basalt series and high-K andesite series). In the late Pliocene and the early Pleistocene, renewal of activity affects the Sangihe-Cotobato arc as well as the Sulu and Negros arcs (same magmatic distinctions). The last volcanic pulse took place in the late Pleistocene with revival of all the present arc systems.
Resumo:
Geochemical investigations were carried out on 19 discrete ash layers and on 42 dispersed ash accumulations in Oligocene to Pleistocene sediments from Sites 736, 737, 745, and 746 of ODP Leg 119 (Kerguelen Plateau in the southern Indian Ocean). The chemical data obtained from more than 500 single-grain glass analyses allow the characterization of two dominant petrographic rock series. The first consists of transitional- to alkali-basalts, the second mainly of trachytes with subordinated alkali-rhyolites and rhyolites. Chemical correlation with possible source areas indicates that the tephra layers from the northern Kerguelen Plateau Sites 736 and 737 were probably erupted from the nearby Kerguelen Islands. The investigated ash layers clearly reflect the Oligocene to recent changes in the composition of the volcanic material recorded from the Kerguelen Islands. The dispersed ashes from Sites 745 and 746 in the Australian-Antarctic Basin display almost the same range in chemical compositions as those from the north. Heard Island and other sources may have contributed to their formation, in addition to the Kerguelen Islands. Dispersed ash of calc-alkaline composition is most probably derived from the South Sandwich island arc, indicating sea-ice rafting as an important mechanism of transport.