976 resultados para Volatility models
Resumo:
In this paper, we provide both qualitative and quantitative measures of the cost of measuring the integrated volatility by the realized volatility when the frequency of observation is fixed. We start by characterizing for a general diffusion the difference between the realized and the integrated volatilities for a given frequency of observations. Then, we compute the mean and variance of this noise and the correlation between the noise and the integrated volatility in the Eigenfunction Stochastic Volatility model of Meddahi (2001a). This model has, as special examples, log-normal, affine, and GARCH diffusion models. Using some previous empirical works, we show that the standard deviation of the noise is not negligible with respect to the mean and the standard deviation of the integrated volatility, even if one considers returns at five minutes. We also propose a simple approach to capture the information about the integrated volatility contained in the returns through the leverage effect.
Resumo:
In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopted is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, three applications to GARCH and realized volatility models are presented.
Resumo:
This article investigates the existence of contagion between countries on the basis of an analysis of returns for stock indices over the period 1994-2003. The economic methodology used is that of multivariate GARCH family volatility models, particularly the DCC models in the form proposed by Engle and Sheppard (2001). The returns were duly corrected for a series of country-specific fundamentals. The relevance of this procedure is highlighted in the literature by the work of Pesaran and Pick (2003). The results obtained in this paper provide evidence favourable to the hypothesis of regional contagion in both Latin America and Asia. As a rule, contagion spread from the Asian crisis to Latin America but not in the opposite direction
Resumo:
O objetivo do presente trabalho é analisar as características empíricas de uma série de retornos de dados em alta freqüência para um dos ativos mais negociados na Bolsa de Valores de São Paulo. Estamos interessados em modelar a volatilidade condicional destes retornos, testando em particular a presença de memória longa, entre outros fenômenos que caracterizam este tipo de dados. Nossa investigação revela que além da memória longa, existe forte sazonalidade intradiária, mas não encontramos evidências de um fato estilizado de retornos de ações, o efeito alavancagem. Utilizamos modelos capazes de captar a memória longa na variância condicional dos retornos dessazonalizados, com resultados superiores a modelos tradicionais de memória curta, com implicações importantes para precificação de opções e de risco de mercado
Resumo:
Mensalmente são publicados relatórios pelo Departamento de Agricultura dos Estados Unidos (USDA) onde são divulgados dados de condições das safras, oferta e demanda globais, nível dos estoques, que servem como referência para todos os participantes do mercado de commodities agrícolas. Esse mercado apresenta uma volatilidade acentuada no período de divulgação dos relatórios. Um modelo de volatilidade estocástica com saltos é utilizado para a dinâmica de preços de milho e de soja. Não existe um modelo ‘ideal’ para tal fim, cada um dos existentes têm suas vantagens e desvantagens. O modelo escolhido foi o de Oztukel e Wilmott (1998), que é um modelo de volatilidade estocástica empírica, incrementado com saltos determinísticos. Empiricamente foi demonstrado que um modelo de volatilidade estocástica pode ser bem ajustado ao mercado de commodities, e o processo de jump-diffusion pode representar bem os saltos que o mercado apresenta durante a divulgação dos relatórios. As opções de commodities agrícolas que são negociadas em bolsa são do tipo americanas, então alguns métodos disponíveis poderiam ser utilizados para precificar opções seguindo a dinâmica do modelo proposto. Dado que o modelo escolhido é um modelo multi-fatores, então o método apropriado para a precificação é o proposto por Longstaff e Schwartz (2001) chamado de Monte Carlo por mínimos quadrados (LSM). As opções precificadas pelo modelo são utilizadas em uma estratégia de hedge de uma posição física de milho e de soja, e a eficiência dessa estratégia é comparada com estratégias utilizando-se instrumentos disponíveis no mercado.
Resumo:
Nas últimas décadas, a análise dos padrões de propagação internacional de eventos financeiros se tornou o tema de grande parte dos estudos acadêmicos focados em modelos de volatilidade multivariados. Diante deste contexto, objetivo central do presente estudo é avaliar o fenômeno de contágio financeiro entre retornos de índices de Bolsas de Valores de diferentes países a partir de uma abordagem econométrica, apresentada originalmente em Pelletier (2006), sobre a denominação de Regime Switching Dynamic Correlation (RSDC). Tal metodologia envolve a combinação do Modelo de Correlação Condicional Constante (CCC) proposto por Bollerslev (1990) com o Modelo de Mudança de Regime de Markov sugerido por Hamilton e Susmel (1994). Foi feita uma modificação no modelo original RSDC, a introdução do modelo GJR-GARCH formulado em Glosten, Jagannathan e Runkle (1993), na equação das variâncias condicionais individuais das séries para permitir capturar os efeitos assimétricos na volatilidade. A base de dados foi construída com as séries diárias de fechamento dos índices das Bolsas de Valores dos Estados Unidos (SP500), Reino Unido (FTSE100), Brasil (IBOVESPA) e Coréia do Sul (KOSPI) para o período de 02/01/2003 até 20/09/2012. Ao longo do trabalho a metodologia utilizada foi confrontada com outras mais difundidos na literatura, e o modelo RSDC com dois regimes foi definido como o mais apropriado para a amostra selecionada. O conjunto de resultados encontrados fornecem evidências a favor da existência de contágio financeiro entre os mercados dos quatro países considerando a definição de contágio financeiro do Banco Mundial denominada de “muito restritiva”. Tal conclusão deve ser avaliada com cautela considerando a extensa diversidade de definições de contágio existentes na literatura.
Resumo:
Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.
Resumo:
In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In the first chapter, we test some stochastic volatility models using options on the S&P 500 index. First, we demonstrate the presence of a short time-scale, on the order of days, and a long time-scale, on the order of months, in the S&P 500 volatility process using the empirical structure function, or variogram. This result is consistent with findings of previous studies. The main contribution of our paper is to estimate the two time-scales in the volatility process simultaneously by using nonlinear weighted least-squares technique. To test the statistical significance of the rates of mean-reversion, we bootstrap pairs of residuals using the circular block bootstrap of Politis and Romano (1992). We choose the block-length according to the automatic procedure of Politis and White (2004). After that, we calculate a first-order correction to the Black-Scholes prices using three different first-order corrections: (i) a fast time scale correction; (ii) a slow time scale correction; and (iii) a multiscale (fast and slow) correction. To test the ability of our model to price options, we simulate options prices using five different specifications for the rates or mean-reversion. We did not find any evidence that these asymptotic models perform better, in terms of RMSE, than the Black-Scholes model. In the second chapter, we use Brazilian data to compute monthly idiosyncratic moments (expected skewness, realized skewness, and realized volatility) for equity returns and assess whether they are informative for the cross-section of future stock returns. Since there is evidence that lagged skewness alone does not adequately forecast skewness, we estimate a cross-sectional model of expected skewness that uses additional predictive variables. Then, we sort stocks each month according to their idiosyncratic moments, forming quintile portfolios. We find a negative relationship between higher idiosyncratic moments and next-month stock returns. The trading strategy that sells stocks in the top quintile of expected skewness and buys stocks in the bottom quintile generates a significant monthly return of about 120 basis points. Our results are robust across sample periods, portfolio weightings, and to Fama and French (1993)’s risk adjustment factors. Finally, we identify a return reversal of stocks with high idiosyncratic skewness. Specifically, stocks with high idiosyncratic skewness have high contemporaneous returns. That tends to reverse, resulting in negative abnormal returns in the following month.
Resumo:
The paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical estimation. For this purpose, we use an underlying vector random coefficient autoregressive process, for which we show the equivalent representation for the asymmetric multivariate conditional volatility model, to derive asymptotic theory for the quasi-maximum likelihood estimator. As an extension, we develop a new multivariate asymmetric long memory volatility model, and discuss the associated asymptotic properties.
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
Techniques for evaluating and selecting multivariate volatility forecasts are not yet understood as well as their univariate counterparts. This paper considers the ability of different loss functions to discriminate between a set of competing forecasting models which are subsequently applied in a portfolio allocation context. It is found that a likelihood-based loss function outperforms its competitors, including those based on the given portfolio application. This result indicates that considering the particular application of forecasts is not necessarily the most effective basis on which to select models.
Resumo:
The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis