815 resultados para Volatility clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many business-oriented software applications are subject to frequent changes in requirements. This paper shows that, ceteris paribus, increases in the volatility of system requirements decrease the reliability of software. Further, systems that exhibit high volatility during the development phase are likely to have lower reliability during their operational phase. In addition to the typically higher volatility of requirements, end-users who specify the requirements of business-oriented systems are usually less technically oriented than people who specify the requirements of compilers, radar tracking systems or medical equipment. Hence, the characteristics of software reliability problems for business-oriented systems are likely to differ significantly from those of more technically oriented systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are basic misunderstandings on derivative markets. Some professionals believe that they are a kind of casinos and have no utility for the investors. This work looks at the effects of options introduction in the Brazilian market, seeking for another benefit for this introduction: changes in the stocks risk leveI. Our results are the same found in the US and other markets: the options introduction reduces the stocks volatility. We also found that there is a slight indication that the volatility becames more stochastic with this alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper seeks to study the persistence in the G7’s stock market volatility, which is carried out using the GARCH, IGARCH and FIGARCH models. The data set consists of the daily returns of the S&P/TSX 60, CAC 40, DAX 30, MIB 30, NIKKEI 225, FTSE 100 and S&P 500 indexes over the period 1999-2009. The results evidences long memory in volatility, which is more pronounced in Germany, Italy and France. On the other hand, Japan appears as the country where this phenomenon is less obvious; nevertheless, the persistence prevails but with minor intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we analyze the relationship between volatility in index futures markets and the number of open and closed positions. We observe that, although in general both positions are positively correlated with contemporaneous volatility, in the case of S&P 500, only the number of open positions has influence over the volatility. Additionally, we observe a stronger positive relationship on days characterized by extreme movements of these contracting movements dominating the market. Finally, our findings suggest that day-traders are not associated to an increment of volatility, whereas uninformed traders, both opening and closing their positions, have to do with it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial literature and financial industry use often zero coupon yield curves as input for testing hypotheses, pricing assets or managing risk. They assume this provided data as accurate. We analyse implications of the methodology and of the sample selection criteria used to estimate the zero coupon bond yield term structure on the resulting volatility of spot rates with different maturities. We obtain the volatility term structure using historical volatilities and Egarch volatilities. As input for these volatilities we consider our own spot rates estimation from GovPX bond data and three popular interest rates data sets: from the Federal Reserve Board, from the US Department of the Treasury (H15), and from Bloomberg. We find strong evidence that the resulting zero coupon bond yield volatility estimates as well as the correlation coefficients among spot and forward rates depend significantly on the data set. We observe relevant differences in economic terms when volatilities are used to price derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a Markov chain framework to characterize the behavior of the CBOE Volatility Index (VIX index). Two possible regimes are considered: high volatility and low volatility. The specification accounts for deviations from normality and the existence of persistence in the evolution of the VIX index. Since the time evolution of the VIX index seems to indicate that its conditional variance is not constant over time, I consider two different versions of the model. In the first one, the variance of the index is a function of the volatility regime, whereas the second version includes an autoregressive conditional heteroskedasticity (ARCH) specification for the conditional variance of the index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper our aim is to gain a better understanding of the relationship between market volatility and industrial structure. As conflicting results have been documented regarding the relationship between market industry concentration and market volatility, this study investigates this relationship in the time series. We have found that this relationship is only significant and positive for Spain. Our results suggest that we cannot generalize across different countries that market industrial structure (concentration) is a significant factor in explaining market volatility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to analyze the forecasting ability of the CARR model proposed by Chou (2005) using the S&P 500. We extend the data sample, allowing for the analysis of different stock market circumstances and propose the use of various range estimators in order to analyze their forecasting performance. Our results show that there are two range-based models that outperform the forecasting ability of the GARCH model. The Parkinson model is better for upward trends and volatilities which are higher and lower than the mean while the CARR model is better for downward trends and mean volatilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To estimate the incidence rate of type 1 diabetes in the urban area of Santiago, Chile, from March 21, 1997 to March 20, 1998, and to assess the spatio-temporal clustering of cases during that period. METHODS: All sixty-one incident cases were located temporally (day of diagnosis) and spatially (place of residence) in the area of study. Knox's method was used to assess spatio-temporal clustering of incident cases. RESULTS: The overall incidence rate of type 1 diabetes was 4.11 cases per 100,000 children aged less than 15 years per year (95% confidence interval: 3.06--5.14). The incidence rate seems to have increased since the last estimate of the incidence calculated for the years 1986--1992 in the metropolitan region of Santiago. Different combinations of space-time intervals have been evaluated to assess spatio-temporal clustering. The smallest p-value was found for the combination of critical distances of 750 meters and 60 days (uncorrected p-value = 0.048). CONCLUSIONS: Although these are preliminary results regarding space-time clustering in Santiago, exploratory analysis of the data method would suggest a possible aggregation of incident cases in space-time coordinates.