936 resultados para Virulence profile
Resumo:
Background: Aggressive periodontitis is a specific form of periodontal disease that is characterized by rapid attachment loss and bone destruction. Cytokine profiles are of considerable value when studying disease course during treatment. The aim of this trial was to investigate cytokine levels in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis, after treatment with photodynamic therapy (PDT) or scaling and root planing (SRP), in a split-mouth design on -7, 0, +1, +7, +30, and +90 days. Methods: Ten patients were randomly treated with PDT using a laser source associated with a photosensitizer or SRP with hand instruments. GCF samples were collected, and the concentrations of tumor necrosis factor-alpha (TNF-alpha) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by enzyme-linked immunosorbent assays. The data were analyzed using generalized estimating equations to test the associations among treatments, evaluated parameters, and experimental times (alpha = 0.05). Results: Non-surgical periodontal treatment with PDT or SRP led to statistically significant reductions in TNF-alpha level 30 days following treatment. There were similar levels of TNF-alpha and RANKL at the different time points in both groups, with no statistically significant differences. Conclusion: SRP and PDT had similar effects on crevicular TNF-alpha and RANKL levels in patients with aggressive periodontitis. J Periodontol 2009;80:98-105.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvested from the chicken intestinal lumen (cecum) was compared with that of a late-log-phase LB broth culture using a whole-genome microarray. Levels of transcription, translation, and cell division in vivo were lower than those in vitro. S. Typhimurium appeared to be using carbon sources, such as propionate, 1,2-propanediol, and ethanolamine, in addition to melibiose and ascorbate, the latter possibly transformed to D-xylulose. Amino acid starvation appeared to be a factor during colonization. Bacteria in the lumen were non- or weakly motile and nonchemotactic but showed upregulation of a number of fimbrial and Salmonella pathogenicity island 3 (SPI-3) and 5 genes, suggesting a close physical association with the host during colonization. S. Typhimurium bacteria harvested from the cecal mucosa showed an expression profile similar to that of bacteria from the intestinal lumen, except that levels of transcription, translation, and cell division were higher and glucose may also have been used as a carbon source. © 2011, American Society for Microbiology.
Resumo:
The incidence of opportunistic fungal infections has increased in recent decades due to the growing proportion of immunocompromised patients in our society. Candida krusei has been described as a causative agent of disseminated fungal infections in susceptible patients. Although its prevalence remains low among yeast infections (2-5%), its intrinsic resistance to fluconazole makes this yeast important from epidemiologic aspects. Non mammalian organisms are feasible models to study fungal virulence and drug efficacy. In this work we have used the lepidopteran Galleria mellonella and the nematode Caenorhabditis elegans as models to assess antifungal efficacy during infection by C. krusei. This yeast killed G. mellonella at 25, 30 and 37°C and reduced haemocytic density. Infected larvae melanized in a dose-dependent manner. Fluconazole did not protect against C. krusei infection, in contrast to amphotericin B, voriconazole or caspofungin. However, the doses of these antifungals required to obtain larvae protection were always higher during C. krusei infection than during C. albicans infection. Similar results were found in the model host C. elegans. Our work demonstrates that non mammalian models are useful tools to investigate in vivo antifungal efficacy and virulence of C. krusei. © 2013 Scorzoni et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bordetella avium is an opportunistic pathogen that presents tropism for ciliated epithelia, leading to upper respiratory tract disease in turkeys. This agent has also been associated with Lockjaw Syndrome in psittacine birds, but literatures describing the importance of this agent in such species are rare. The purpose of the present study was to report the first outbreak of B. avium infection in juvenile cockatiels demonstrating the Lockjaw Syndrome in Brazil and to investigate the antimicrobial resistance profile and phenotypic and genotypic characteristics of these strains. Surprising, the strains obtained from five infected cockatiel chicks from three different breeders from different Brazilian states showed a clonal relationship using the Pulsed Field Gel Electrophoresis and Single Enzyme Amplified Fragment Length Polymorphism techniques. The virulence potentials of the B. avium strains were assessed using tracheal adherence and cytotoxic effects on a VERO cell monolayer. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in Sao Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46) of isolates belonged to capsular type A, and 54.34% (25/46) of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin.
Resumo:
Background: Aggregatibacter actinomycetemcomitans serotypes are clearly associated with periodontitis or health, which suggests distinct strategies for survival within the host. Objective: We investigated the transcription profile of virulence-associated genes in A. actinomycetemcomitans serotype b (JP2 and SUNY 465) strains associated with disease and serotype a (ATCC 29523) strain associated with health. Design: Bacteria were co-cultured with immortalized gingival epithelial cells (OBA-9). The adhesion efficiency after 2 hours and the relative transcription of 13 genes were evaluated after 2 and 24 hours of interaction. Results: All strains were able to adhere to OBA-9, and this contact induced transcription of pgA for polysaccharide biosynthesis in all tested strains. Genes encoding virulence factors as Omp29, Omp100, leukotoxin, and CagE (apoptotic protein) were more transcribed by serotype b strains than by serotype a. ltxA and omp29, encoding the leukotoxin and the highly antigenic Omp29, were induced in serotype b by interaction with epithelial cells. Factors related to colonization (aae, flp, apaH, and pgA) and cdtB were upregulated in serotype a strain after prolonged interaction with OBA-9. Conclusion: Genes relevant for surface colonization and interaction with the immune system are regulated differently among the strains, which may help explaining their differences in association with disease.
Resumo:
Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF), the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10 degrees C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS) were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.
Resumo:
Diabetes mellitus is considered a risk factor for Group B Streptococcus (GBS) infections. Typically, this pathology is associated to high glucose levels in the bloodstream. Although clinical evidences support this notion, the physiological mechanisms underlying GBS adaptation to such conditions are not yet defined. In the attempt to address this issue, we performed comparative global gene expression analysis of GBS grown under glucose-stress conditions and observed that a number of metabolic and virulence genes was differentially regulated. Of importance, we also demonstrated that by knocking-out the csrRS locus the transcription profile of GBS grown in high-glucose conditions was profoundly affected, with more than a third of glucose-dependent genes, including the virulence factor bibA, found to be controlled by this two-component system. Furthermore, in vitro molecular analysis showed that CsrR specifically binds to the bibA promoter and the phosphorilation increases the affinity of the regulator to this promoter region. Moreover, we demonstrated that CsrR acts as a repressor of bibA expression by binding to its promoter in vivo. In conclusion, this work by elucidating both the response of GBS to pathological glucose conditions and the underlined molecular mechanisms will set the basis for a better understanding of GBS pathogenesis.
Resumo:
"Issued February 1992"--P. [2] of cover.
Resumo:
A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroN(E).(coli), traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STh, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.
Resumo:
Few studies have evaluated the profile of use of disease modifying drugs (DMD) in Brazilian patients with spondyloarthritis (SpA). A common research protocol was applied prospectively in 1505 patients classified as SpA by criteria of the European Spondyloarthropathies Study Group (ESSG), followed at 29 referral centers in Rheumatology in Brazil. Demographic and clinical variables were obtained and evaluated, by analyzing their correlation with the use of DMDs methotrexate (MTX) and sulfasalazine (SSZ). At least one DMD was used by 73.6% of patients: MTX by 29.2% and SSZ by 21.7%, while 22.7% used both drugs. The use of MTX was significantly associated with peripheral involvement, and SSZ was associated with axial involvement, and the two drugs were more administered, separately or in combination, in the mixed involvement (p < 0.001). The use of a DMD was significantly associated with Caucasian ethnicity (MTX , p = 0.014), inflammatory back pain (SSZ, p = 0.002) , buttock pain (SSZ, p = 0.030), neck pain (MTX, p = 0.042), arthritis of the lower limbs (MTX, p < 0.001), arthritis of the upper limbs (MTX, p < 0.001), enthesitis (p = 0.007), dactylitis (MTX, p < 0.001), inflammatory bowel disease (SSZ, p < 0.001) and nail involvement (MTX, p < 0.001). The use of at least one DMD was reported by more than 70% of patients in a large cohort of Brazilian patients with SpA, with MTX use more associated with peripheral involvement and the use of SSZ more associated with axial involvement.
Resumo:
Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.