976 resultados para Vinho tropical
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.
Resumo:
The Subtropical Design Handbook for Planners is primarily intended to provide advice in developing planning schemes to achieve the South East Queensland Regional Plan’s vision. This calls for ‘development which is sustainable and well-designed, and where the subtropical character of the region is recognised and reinforced’.
Resumo:
Daylighting in tropical and sub-tropical climates presents a unique challenge that is generally not well understood by designers. In a sub-tropical region such as Brisbane, Australia the majority of the year comprises of sunny clear skies with few overcast days and as a consequence windows can easily become sources of overheating and glare. The main strategy in dealing with this issue is extensive shading on windows. However, this in turn prevents daylight penetration into buildings often causing an interior to appear gloomy and dark even though there is more than sufficient daylight available. As a result electric lighting is the main source of light, even during the day. Innovative daylight devices which redirect light from windows offer a potential solution to this issue. These devices can potentially improve daylighting in buildings by increasing the illumination within the environment decreasing the high contrast between the window and work regions and deflecting potentially glare causing sunlight away from the observer. However, the performance of such innovative daylighting devices are generally quantified under overcast skies (i.e. daylight factors) or skies without sun, which are typical of European climates and are misleading when considering these devices for tropical or sub-tropical climates. This study sought to compare four innovative window daylighting devices in RADIANCE; light shelves, laser cut panels, micro-light guides and light redirecting blinds. These devices were simulated in RADIANCE under sub-tropical skies (for Brisbane) within the test case of a typical CBD office space. For each device the quantity of light redirected and its distribution within the space was used as the basis for comparison. In addition, glare analysis on each device was conducted using Weinold and Christoffersons evalglare. The analysis was conducted for selected hours for a day in each season. The majority of buildings that humans will occupy in their lifetime are already constructed, and extensive remodelling of most of these buildings is unlikely. Therefore the most effective way to improve daylighting in the near future will be through the alteration existing window spaces. Thus it will be important to understand the performance of daylighting systems with respect to the climate it is to be used in. This type of analysis is important to determine the applicability of a daylighting strategy so that designers can achieve energy efficiency as well the health benefits of natural daylight.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.
Resumo:
This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
This paper considers the literary landscape of contemporary Brisbane and pays particular attention to the relationship between sub-tropical spaces (homes, streets, and clubs) and local writing. ‘Dripping Sweat’ proposes that within the new urban cool of Brisbane’s cultural life there is nostalgia for the sub-tropical environment that continues to intrude on contemporary fiction. The paper considers the architecture of both public and private spaces and discusses how the literary imagination re-designs contemporary Brisbane with a selective appropriation of environmental settings.
Resumo:
The current rapid urban growth throughout the world manifests in various ways and historically cities have grown, similarly, alternately or simultaneously between planned extensions and organic informal settlements (Mumford, 1989). Within cities different urban morphological regions can reveal different contexts of economic growth and/or periods of dramatic social/technological change (Whitehand, 2001, 105). Morpho-typological study of alternate contexts can present alternative models and contribute to the present discourse which questions traditional paradigms of urban planning and design (Todes et al, 2010). In this study a series of cities are examined as a preliminary exploration into the urban morphology of cities in ‘humid subtropical’ climates. From an initial set of twenty, six cities were selected: Sao Paulo, Brazil; Jacksonville, USA; Maputo, Mozambique; Kanpur, India; Hong Kong, China; and Brisbane, Australia. The urban form was analysed from satellite imagery at a constant scale. Urban morphological regions (types) were identified as those demonstrating particular consistant characteristics of form (density, typology and pattern) different to their surroundings when examined at a constant scale. This analysis was correlated against existing data and literature discussing the proliferation of two types of urban development, ‘informal settlement’ (defined here as self-organised communities identifiable but not always synonymous with ‘slums’) and ‘suburbia’ (defined here as master planned communities of generally detached houses prevalent in western society) - the extreme ends of a hypothetical spectrum from ‘planned’ to ‘spontaneous’ urban development. Preliminary results show some cities contain a wide variety of urban form ranging from the highly organic ‘self-organised’ type to the highly planned ‘master planned community’ (in the case of Sao Paulo) while others tend to fall at one end of the planning spectrum or the other (more planned in the cases of Brisbane and Jacksonville; and both highly planned and highly organic in the case of Maputo). Further research will examine the social, economical and political drivers and controls which lead to this diversity or homogeneity of urban form and speculates on the role of self-organisation as a process for the adaptation of urban form.
Resumo:
A new decision-making tool that will assist designers in the selection of appropriate daylighting solutions for buildings in tropical locations has been previously proposed by the authors. Through an evaluation matrix that prioritizes the parameters that best respond to the needs of tropical climates (e.g. reducing solar gain and protection from glare) the tool determines the most appropriate devices for specific climate and building inputs. The tool is effective in demonstrating the broad benefits and limitations of the different daylight strategies for buildings in the tropics. However for thorough analysis and calibration of the tool, validation is necessary. This paper presents a first step in the validation process. RADIANCE simulations were conducted to compare simulation performance with the performance predicted by the tool. To this end, an office building case study in subtropical Brisbane, Australia, and five different daylighting devices including openings, light guiding systems and light transport systems were simulated. Illuminance, light uniformity, daylight penetration and glare analysis were assessed for each device. The results indicate the tool can appropriately rank and recommend daylighting strategies based on specific building inputs for tropical and subtropical regions, making it a useful resource for designers.
Resumo:
Analysis of fossils from cave deposits at Mount Etna (eastern-central Queensland) has established that a species-rich rainforest palaeoenvironment existed in that area during the middle Pleistocene. This unexpected finding has implications for several fields (e.g., biogeography/phylogeography of rainforest-adapted taxa, and the impact of climate change on rainforest communities), but it was unknown whether the Mount Etna sites represented a small refugial patch of rainforest or was more widespread. In this study numerous bone deposits in caves in north-east Queensland are analysed to reconstruct the environmental history of the area during the late Quaternary. Study sites are in the Chillagoe/Mitchell Palmer and Broken River/Christmas Creek areas. The cave fossil records in these study areas are compared with dated (middle Pleistocene-Holocene) cave sites in the Mount Etna area. Substantial taxonomic work on the Mount Etna faunas (particularly dasyurid marsupials and murine rodents) is also presented as a prerequisite for meaningful comparison with the study sites further north. Middle Pleistocene sites at Mount Etna contain species indicative of a rainforest palaeoenvironment. Small mammal assemblages in the Mount Etna rainforest sites (>500-280 ka) are unexpectedly diverse and composed almost entirely of new species. Included in the rainforest assemblages are lineages with no extant representatives in rainforest (e.g., Leggadina), one genus previously known only from New Guinea (Abeomelomys), and forms that appear to bridge gaps between related but morphologically-divergent extant taxa ('B-rat' and 'Pseudomys C'). Curiously, some taxa (e.g., Melomys spp.) are notable for their absence from the Mount Etna rainforest sites. After 280 ka the rainforest faunas are replaced by species adapted to open, dry habitats. At that time the extinct ‘rainforest’ dasyurids and rodents are replaced by species that are either extant or recently extant. By the late Pleistocene all ‘rainforest’ and several ‘dry’ taxa are locally or completely extinct, and the small mammal fauna resembles that found in the area today. The faunal/environmental changes recorded in the Mount Etna sites were interpreted by previous workers as the result of shifts in climate during the Pleistocene. Many samples from caves in the Chillagoe/Mitchell-Palmer and Broken River/Christmas Creek areas are held in the Queensland Museum’s collection. These, supplemented with additional samples collected in the field as well as samples supplied by other workers, were systematically and palaeoecologically analysed for the first time. Palaeoecological interpretation of the faunal assemblages in the sites suggests that they encompass a similar array of palaeoenvironments as the Mount Etna sites. ‘Rainforest’ sites at the Broken River are here interpreted as being of similar age to those at Mount Etna, suggesting the possibility of extensive rainforest coverage in eastern tropical Queensland during part of the Pleistocene. Likewise, faunas suggesting open, dry palaeoenvironments are found at Chillagoe, the Broken River and Mount Etna, and may be of similar age. The 'dry' faunal assemblage at Mount Etna (Elephant hole Cave) dates to 205-170 ka. Dating of one of the Chillagoe sites (QML1067) produced a maximum age for the deposit of approximately 200 ka, and the site is interpreted as being close to that age, supporting the interpretation of roughly contemporaneous deposition at Mount Etna and Chillagoe. Finally, study sites interpreted as being of late Pleistocene-Holocene age show faunal similarities to sites of that age near Mount Etna. This study has several important implications for the biogeography and phylogeography of murine rodents, and represents a major advance in the study of the Australian murine fossil record. Likewise the survey of the northern study areas is the first systematic analysis of multiple sites in those areas, and is thus a major contribution to knowledge of tropical Australian faunas during the Quaternary. This analysis suggests that climatic changes during the Pleistocene affected a large area of eastern tropical Queensland in similar ways. Further fieldwork and dating is required to properly analyse the geographical extent and timing of faunal change in eastern tropical Queensland.