998 resultados para Vesicle Formation
Resumo:
The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.
Resumo:
Using quantitative light microscopy and a modified immunoelectron microscopic technique, we have characterized the entry pathway of the cholera toxin binding subunit (CTB) in primary embryonic fibroblasts. CTB trafficking to the Golgi complex was identical in caveolin-1 null (Cav1 -/-) mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs. CTB entry in the Cav1 -/- MEFs was predominantly clathrin and dynamin independent but relatively cholesterol dependent. Immunoelectron microscopy was used to quantify budded and surface-connected caveoloe and to identify noncaveolar endocytic vehicles. In WT MEFs a small fraction of the total Cav1-positive structures were shown to bud from the plasma membrane (2 % per minute), and budding increased upon okadaic acid or lactosyl ceramide treatment. However, the major carriers involved in initial entry of CTB were identified as uncoated tubular or ring-shaped structures. These carriers contained GPI-anchored proteins and fluid phase markers and represented the major vehicles mediating CTB uptake in both WT and caveolae-null cells.
Resumo:
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra- endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid ( LBPA) and its putative effector Alix/ AIP1, and is regulated by phosphatidylinositol- 3-phosphate ( PtdIns( 3) P) signalling via the PtdIns( 3) P- binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back- fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns( 3) P and their effectors.
Resumo:
The key to the use of polymersomes as effective molecular delivery systems is in the ability to design processing routes that can efficiently encapsulate the molecular payload. We have evaluated various surface rehydration mechanisms for encapsulation, in each case characterizing the morphologies formed using DLS and confocal microscopy as well as determining the encapsulation efficiency for the hydrophilic dye Rhodamine B. In contrast to bulk methods, where the encapsulation efficiencies are low, we find that higher efficiencies can be obtained by the rehydration of thin films. We relate these results to the non-equilibrium mechanisms that underlie vesicle formation and discuss how an understanding of these mechanisms can help optimize encapsulation efficiencies. Our conclusion is that, even considering the good encapsulation efficiency, surface methods are still unsuitable for the massive scale-up needed when applied to commercial mass market molecular delivery scenarios. However, targeting more specialized applications for high value ingredients (like pharmaceuticals) might be more feasible.
Resumo:
Rab GTPases are the largest family of the Ras superfamily and are key regulators of membrane trafficking within the cell. There are over 60 members of the Rab family which localise to specific membrane compartments and interact with effector proteins to regulate membrane trafficking processes, such as vesicle formation, vesicle trafficking within the cell and fusion with an acceptor compartment. Multiple effector proteins have been identified for many Rabs, some of which can interact with more than one Rab to link their function at a specific membrane location or to link them together in a Rab activation cascade. Rabin8 is one such protein which is an effector for Rab11a and a Guanine nucleotide Exchange Factor (GEF) for Rab8a. Rabin8 participates in a conserved Rab activation cascade which is critical in the formation of primary cilia. Data presented in this thesis has shown that GRAB interacts with Rab3a, Rab8a, Rab11a and Rab11b in a nucleotide dependent manner. Furthermore, the minimal interacting regionbetween these proteins has been investigated. The functional outcome of GRAB knockdown has also been examined and data in this thesis highlights the phenotypic outcome.
Resumo:
Development of anti-cancer drugs towards clinical application is costly and inefficient. Large screens of drugs, efficacious for non-cancer disease, are currently being used to identify candidates for repurposing based on their anti-cancer properties. Here, we show that low-dose salinomycin, a coccidiostat ionophore previously identified in a breast cancer screen, has anti-leukemic efficacy. AML and MLLr cell lines, primary cells and patient samples were sensitive to submicromolar salinomycin. Most strikingly, colony formation of normal hematopoietic cells was unaffected by salinomycin, demonstrating a lack of hemotoxicity at the effective concentrations. Furthermore, salinomycin treatment of primary cells resulted in loss of leukemia repopulation ability following transplantation, as demonstrated by extended recipient survival compared to controls. Bioinformatic analysis of a 17-gene signature identified and validated in primary MLLr cells, uncovered immunomodulatory pathways, hubs and protein interactions as potential transducers of low dose salinomycin treatment. Additionally, increased protein expression of p62/Sqstm1, encoded for by one of the 17 signature genes, demonstrates a role for salinomycin in aggresome/vesicle formation indicative of an autophagic response.
Together, the data support the efficacy of salinomycin as an anti-leukemic at non-hemotoxic concentrations. Further investigation alone or in combination with other therapies is warranted for future clinical trial.
Resumo:
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.
Resumo:
Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.
Resumo:
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Resumo:
Sec1p-like/Munc-18 (SM) proteins bind to t-SNAREs and inhibit ternary complex formation. Paradoxically, the absence of SM proteins does not result in constitutive membrane fusion, Here, we show that in yeast cells lacking the SM protein Vps45p, the t-SNARE Tlg2p is down-regulated, to undetectable levels, by rapid proteasomal degradation. In the absence of Vps45p, Tlg2p can be stabilized through abolition of proteasome activity. Surprisingly, the stabilized Tlg2p was targeted to the correct intracellular location. However, the stabilized Tlg2p is non-functional and unable to bind its cognate SNARE binding partners, Tlg1p and Vti1p, in the absence of Vps45p, A truncation mutant lacking the first 230 residues of Tlg2p no longer bound Vps45p but was able to form complexes with Tlg1p and Vti1p in the absence of the SM protein. These data provide us with two valuable insights into the function of SM proteins. First, SM proteins act as chaperone-like molecules for their cognate t-SNAREs, Secondly, SM proteins play an essential role in the activation process allowing their cognate t-SNARE to participate in ternary complex formation.
Resumo:
Picornavirus RNA replication requires the formation of replication complexes (RCs). consisting of virus-induced vesicles associated with viral nonstructural proteins and RNA. Brefeldin A (BFA) has been shown to strongly inhibit RNA replication of poliovirus but not of encephalomyocarditis virus (EMCV). Here, we demonstrate that the replication of parechovirus 1 (ParV1) is partly resistant to BFA, whereas echovirus 11 (EV11) replication is strongly inhibited. Since BFA inhibits COPI-dependent steps in endoplasmic reticulum (ER)-Golgi transport, we tested a hypothesis that different picornaviruses may have differential requirements for COPI in the formation of their RCs. Using immunofluorescence and cryo-immunoelectron microscopy we examined the association of a COPI component, beta-COP, with the RCs of EMCV, ParV1, and EV11 EMCV RCs did not contain beta-COP. In contrast, beta-COP appeared to be specifically distributed to the RCs of EV11 In ParV1-infected cells beta-COP was largely dispersed throughout the cytoplasm, with some being present in the RCs. These results suggest that there are differences in the involvement of COPI in the formation of the RCs of various picornaviruses, corresponding to their differential sensitivity to BFA. EMCV RCs are likely to be formed immediately after vesicle budding from the ER, prior to COPI association with membranes. ParV1 RCs are formed from COPI-containing membranes but COPI is unlikely to be directly involved in their formation, whereas formation of EV11 RCs appears to be dependent on COPI association with membranes.
Resumo:
Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca2+-dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca2+ responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca2+ channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A–siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca2+ current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The vesicle-micelle transition in aqueous mixtures of dioctadecyidimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSQ, steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T-m of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around (XDODAB) approximate to 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When XDODAB > 0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when XDODAB < 0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius RH of about 180 and 500-800 nm, respectively, as obtained by DLS measurements. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have used isothermal titration calorimetry to investigate the vesicle-to-micelle transition in dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) vesicle dispersions induced by the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) at room temperature. Small and giant unilamellar vesicles were prepared by sonication and without sonication, respectively, of the pure cationic surfactants at low concentrations in water. The titration of 1.0 mM DODAX (X = Cl- and Br-) by a concentrated micellar solution of C12E8 shows that the enthalpy of interaction (DeltaH(obs)) of C12E8 in micellar form with DODAX is always endothermic. The titration curves are understood on the basis of superposition of the enthalpies of partitioning of C12E8 into the bilayer, of micelle formation and of vesicle-to-micelle transformation. The enthalpy, DeltaH(obs), initially increases owing to the incorporation of C12E8 into the vesicle bilayer until the C12E8/DODAX saturation ratio (R-sat) is reached, then DeltaH(obs) decreases, in different ways for DODAB and DODAC, owing to degradation of vesicles and formation of mixed micelles and intermediary structures up to the C12E8/DODAX solubilization ratio, R-sol. Above R-sol only mixed micelles exist. The surfactant solubilization takes place in three stages. All the critical ratios are lower for DODAB than for DODAC, meaning that C12E8 solubilizes more strongly in DODAB for example, R-sat is 0.8 for DODAB and 1.2 for DODAC. Sonication has no significant effect on the transition.