865 resultados para Vehicule routing
Resumo:
This dissertation develops a strategic management accounting perspective of inventory routing. The thesis studies the drivers of cost efficiency gains by identifying the role of the underlying cost structure, demand, information sharing, forecasting accuracy, service levels, vehicle fleet, planning horizon and other strategic factors as well as the interaction effects among these factors with respect to performance outcomes. The task is to enhance the knowledge of the strategic situations that favor the implementation of inventory routing systems, understanding cause-and-effect relationships, linkages and gaining a holistic view of the value proposition of inventory routing. The thesis applies an exploratory case study design, which is based on normative quantitative empirical research using optimization, simulation and factor analysis. Data and results are drawn from a real world application to cash supply chains. The first research paper shows that performance gains require a common cost component and cannot be explained by simple linear or affine cost structures. Inventory management and distribution decisions become separable in the absence of a set-dependent cost structure, and neither economies of scope nor coordination problems are present in this case. The second research paper analyzes whether information sharing improves the overall forecasting accuracy. Analysis suggests that the potential for information sharing is limited to coordination of replenishments and that central information do not yield more accurate forecasts based on joint forecasting. The third research paper develops a novel formulation of the stochastic inventory routing model that accounts for minimal service levels and forecasting accuracy. The developed model allows studying the interaction of minimal service levels and forecasting accuracy with the underlying cost structure in inventory routing. Interestingly, results show that the factors minimal service level and forecasting accuracy are not statistically significant, and subsequently not relevant for the strategic decision problem to introduce inventory routing, or in other words, to effectively internalize inventory management and distribution decisions at the supplier. Consequently the main contribution of this thesis is the result that cost benefits of inventory routing are derived from the joint decision model that accounts for the underlying set-dependent cost structure rather than the level of information sharing. This result suggests that the value of information sharing of demand and inventory data is likely to be overstated in prior literature. In other words, cost benefits of inventory routing are primarily determined by the cost structure (i.e. level of fixed costs and transportation costs) rather than the level of information sharing, joint forecasting, forecasting accuracy or service levels.
Resumo:
In earlier work, nonisomorphic graphs have been converted into networks to realize Multistage Interconnection networks, which are topologically nonequivalent to the Baseline network. The drawback of this technique is that these nonequivalent networks are not guaranteed to be self-routing, because each node in the graph model can be replaced by a (2 × 2) switch in any one of the four different configurations. Hence, the problem of routing in these networks remains unsolved. Moreover, nonisomorphic graphs were obtained by interconnecting bipartite loops in a heuristic manner; the heuristic nature of this procedure makes it difficult to guarantee full connectivity in large networks. We solve these problems through a direct approach, in which a matrix model for self-routing networks is developed. An example is given to show that this model encompases nonequivalent self-routing networks. This approach has the additional advantage in that the matrix model itself ensures full connectivity.
Resumo:
The major contribution of this paper is to introduce load compatibility constraints in the mathematical model for the capacitated vehicle routing problem with pickup and deliveries. The employee transportation problem in the Indian call centers and transportation of hazardous materials provided the motivation for this variation. In this paper we develop a integer programming model for the vehicle routing problem with load compatibility constraints. Specifically two types of load compatability constraints are introduced, namely mutual exclusion and conditional exclusion. The model is demonstrated with an application from the employee transportation problem in the Indian call centers.
Resumo:
IEEE 802.16 standards for Wireless Metropolitan Area Networks (WMANs) include a mesh mode of operation for improving the coverage and throughput of the network. In this paper, we consider the problem of routing and centralized scheduling for such networks. We first fix the routing, which reduces the network to a tree. We then present a finite horizon dynamic programming framework. Using it we obtain various scheduling algorithms depending upon the cost function. Next we consider simpler suboptimal algorithms and compare their performances.
Resumo:
Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.
Resumo:
Routing of floods is essential to control the flood flow at the flood control station such that it is within the specified safe limit. In this paper, the applicability of the extended Muskingum method is examined for routing of floods for a case study of Hirakud reservoir, Mahanadi river basin, India. The inflows to the flood control station are of two types-one controllable which comprises of reservoir releases for power and spill and the other is uncontrollable which comprises of inflow from lower tributaries and intermediate catchment between the reservoir and the flood control station. Muskingum model is improved to incorporate multiple sources of inflows and single outflow to route the flood in the reach. Instead of time lag and prismoidal flow parameters, suitable coefficients for various types of inflows were derived using Linear Programming. Presently, the decisions about operation of gates of Hirakud dam are being taken once in 12 h during floods. However, four time intervals of 24, 18, 12 and 6 h are examined to test the sensitivity of the routing time interval on the computed flood flow at the flood control station. It is observed that mean relative error decreases with decrease in routing interval both for calibration and testing phase. It is concluded that the extended Muskingum method can be explored for similar reservoir configurations such as Hirakud reservoir with suitable modifications. (C) 2010 International Association of Hydro-environment Engineering and Research. Asia Pacific Division. Published by Elsevier By. All rights reserved.
Resumo:
Because of frequent topology changes and node failures, providing quality of service routing in mobile ad hoc networks becomes a very critical issue. The quality of service can be provided by routing the data along multiple paths. Such selection of multiple paths helps to improve reliability and load balancing, reduce delay introduced due to route rediscovery in presence of path failures. There are basically two issues in such a multipath routing Firstly, the sender node needs to obtain the exact topology information. Since the nodes are continuously roaming, obtaining the exact topology information is a tough task. Here, we propose an algorithm which constructs highly accurate network topology with minimum overhead. The second issue is that the paths in the path set should offer best reliability and network throughput. This is achieved in two ways 1) by choice of a proper metric which is a function of residual power, traffic load on the node and in the surrounding medium 2) by allowing the reliable links to be shared between different paths.
Resumo:
This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In sensor networks, routing algorithms should be designed such that packet losses due to wireless links are reduced.In this paper, we present a ”potential”-based routing scheme to find routes with high packet delivery ratios. The basic idea is to define a scalar potential value at each node in the network and forward data to the neighbour with the highest potential.For a simple 2-relay network, we propose a potential function that takes into account wireless channel state. Markov-chain based analysis provides analytical expressions for packet delivery ratio. Considerable improvement can be observed compared to a channel-state-oblivious policy. This motivates us to define a channel-state-dependent potential function in a general network context. Simulations show that for a relatively slowly changing wireless network, our approach can provide up to 20% better performance than the commonly- used shortest-hop-count-based routing.
Resumo:
Scalable Networks on Chips (NoCs) are needed to match the ever-increasing communication demands of large-scale Multi-Processor Systems-on-chip (MPSoCs) for multi media communication applications. The heterogeneous nature of application specific on-chip cores along with the specific communication requirements among the cores calls for the design of application-specific NoCs for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular networks-on-chip. The proposed method exploits a priori knowledge of the applications communication characteristic to generate an optimized network topology and corresponding routing tables.
Resumo:
Sensor network applications such as environmental monitoring demand that the data collection process be carried out for the longest possible time. Our paper addresses this problem by presenting a routing scheme that ensures that the monitoring network remains connected and hence the live sensor nodes deliver data for a longer duration. We analyze the role of relay nodes (neighbours of the base-station) in maintaining network connectivity and present a routing strategy that, for a particular class of networks, approaches the optimal as the set of relay nodes becomes larger. We then use these findings to develop an appropriate distributed routing protocol using potential-based routing. The basic idea of potential-based routing is to define a (scalar) potential value at each node in the network and forward data to the neighbor with the highest potential. We propose a potential function and evaluate its performance through simulations. The results show that our approach performs better than the well known lifetime maximization policy proposed by Chang and Tassiulas (2004), as well as AODV [Adhoc on demand distance vector routing] proposed by Perkins (1997).
Resumo:
Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.
Resumo:
We propose two variants of the Q-learning algorithm that (both) use two timescales. One of these updates Q-values of all feasible state-action pairs at each instant while the other updates Q-values of states with actions chosen according to the ‘current ’ randomized policy updates. A sketch of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms for routing on different network topologies are presented and performance comparisons with the regular Q-learning algorithm are shown.
Resumo:
In this paper, we propose an efficient source routing algorithm for unicast flows, which addresses the scalability problem associated with the basic source routing technique. Simulation results indicate that the proposed algorithm indeed helps in reducing the message overhead considerably, and at the same time it gives comparable performance in terms of resource utilization across a wide range of workloads.