998 resultados para Vehicle-bridge interaction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To effectively address the high rate of failure of Insulated Rail Joints (IRJs) in the heavy haul lines, a research plan was designed and implemented with particular attention to understand their mechanical behaviour and deterioration process. In this paper, part of this ongoing research is described. During the past decades many studies have tried to improve the service life of IRJs by introducing a new structural design or material for IRJ components. This paper looks into this problem from a different perspective highlighting the significance of localised condition of track to the loads and responses of the IRJs. Results from a series of field measurements conducted in a rail track within the Australian Rail Track Corporation (ARTC) network are discussed. The interactive effects of IRJ responses and localised track condition are further investigated using the results obtained from numerical simulations. The field measurements and the simulation results provide valuable insight on the influence of track condition to the behaviour of IRJs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper evaluates the potential of gabions as roadside safety barriers. Gabions have the capacity to blend into natural landscape, suggesting that they could be used as a safety barrier for low-volume road in scenic environments. In fact, gabions have already been used for this purpose in Nepal, but the impact response was not evaluated. This paper reports on numerical and experimental investigations performed on a new gabion barrier prototype. To assess the potential use as a roadside barrier, the optimal gabion unit size and mass were investigated using multibody analysis and four sets of 1:4 scaled crash tests were carried out to study the local vehicle-barrier interaction. The barrier prototype was then finalised and subjected to a TB31 crash test according to the European EN1317 standard for N1 safety barriers. The test resulted in a failure due to the rollover of the vehicle and tearing of the gabion mesh yielding a large working width. It was found that although the system potentially has the necessary mass to contain a vehicle, the barrier front face does not have the necessary stiffness and strength to contain the gabion stone filling and hence redirect the vehicle. In the EN1317 test, the gabion barrier acted as a ramp for the impacting vehicle, causing rollover. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the fluid motion-vehicle dynamics interaction, a model of four, liquid filled two-axle container freight wagons was set up. The railway vehicle has been modelled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. SIMPACK has been used for MBS analysis, and ANSYS for liquid sloshing modelling and equivalent mechanical systems validation. Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of the unused coupling screw from its hanger. The coupling screw's release was especially obtained when a period of acceleration was followed by an abrupt braking manoeuvre at 1 m/s2. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Possible solutions to avoid the phenomenon are given.Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. This paper reports on a study of the fluid motion-train vehicle dynamics interaction. In the study, a model of four, liquid-filled two-axle container freight wagons was developed. The railway vehicle has been modeled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. A simulation program was used for MBS analysis, and a finite element analysis program was used for liquid sloshing modeling and equivalent mechanical systems validation. Acceleration and braking maneuvers of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of an unused coupling screw from its hanger. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Solutions are suggested to avoid the resonance problem, and directions for future research are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, vehicle-track interaction for a new slab track design, conceived to reduce noise and vibration levels has been analyzed, assessing the derailment risk for trains running on curved track when encountering a broken rail. Two different types of rail fastening systems with different elasticities have been analysed and compared. Numerical methods were used in order to simulate the dynamic behaviour of the train-track interaction. Multibody system (MBS) modelling techniques were combined with techniques based on the finite element method (FEM). MBS modelling was used for modelling the vehicle and FEM for simulating the elastic track. The simulation model was validated by comparing simulated results to experimental data obtained in field testing. During the simulations various safety indices, characteristic of derailment risk, were analysed. The simulations realised at the maximum running velocity of 110 km/h showed a similar behaviour for several track types. When reducing the running speed, the safety indices worsened for both cases. Although the worst behaviour was observed for the track with a greater elasticity, in none of the simulations did a derailment occur when running over the broken rail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La vía tradicional sobre balasto sigue siendo una selección para las líneas de alta velocidad a pesar de los problemas técnicos y la prestación del funcionamiento. El problema de la vía sobre balasto es el proceso continuo del deterioro de éste debido a las cargas asociadas al tráfico ferroviario. En consecuencia es imprescindible un mantenimiento continuado para mantener un alineamiento adecuado de la vía. Por eso se surge la necesidad de comprender mejor el mecanismo involucrado en el deterioro de la vía y los factores claves que rigen su progresión a lo largo de ciclos de carga con el fin de reducir los costos del mantenimiento de la vía y mejorar el diseño de las nuevas vías. La presente tesis intenta por un lado desarrollar los modelos más adecuados y eficientes del vehículo y de la vía para los cálculos de los efectos dinámicos debido al tráfico de ferrocarril sobre la infraestructura de la vía sobre balasto, y por otro evaluar estos efectos dinámicos sobre el deterioro de la vía sobre balasto a largo plazo, empleando un adecuado modelo de predicción del deterioro de la misma. Se incluye en el trabajo una recopilación del estado del arte en lo referente a la dinámica de la vía, a la modelización del vehículo, de la vía y de la interacción entre ambos. También se hace un repaso al deterioro de la vía y los factores que influyen en su proceso. Para la primera línea de investigación de esta tesis, se han desarrollado los diferentes modelos del vehículo y de la vía y la modelización de la interacción entre ambos para los cálculos dinámicos en dos y tres dimensiones. En la interacción vehículo-vía, se ha empleado la formulación de contacto nodo-superficie para establecer la identificación de las superficies en contacto y el método de los multiplicadores de Lagrange para imponer las restricciones de contacto. El modelo de interacción se ha contrastado con los casos reportados en la literatura. Teniendo en cuenta el contacto no lineal entre rueda-carril y los perfiles de irregularidades distribuidas de la vía, se han evaluado y comparado los efectos dinámicos sobre el sistema vehículo-vía en la interacción de ambos, para distintas velocidades de circulación del vehículo, en los aspectos como la vibración del vehículo, fuerza de contacto, fuerza transmitida en los railpads, la vibración del carril. También se hace un estudio de la influencia de las propiedades de los componentes de la vía en la respuesta dinámica del sistema vehículo-vía. Se ha desarrollado el modelo del asiento de la vía que consiste en la implementación del modelo de acumulación de Bochum y del modelo de hipoplasticidad en la subrutina del usuario \UMAT" del programa ABAQUS. La implementación numérica ha sido comprobado al comparar los resultados de las simulaciones numéricas con los reportados en la literatura. Se ha evaluado la calidad geométrica de la vía sobre balasto de los tramos de estudio con datos reales de la auscultación proporcionados por ADIF (2012). Se ha propuesto una metodología de simulación, empleando el modelo de asiento, para reproducir el deterioro de la geometría de la vía. Se usan los perfiles de la nivelación longitudinal de la auscultación como perfiles de irregularidades iniciales de la vía en las simulaciones numéricas. También se evalúa la influencia de la velocidad de circulación sobre el deterioro de la vía. The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to ballast track solution in some cases. The considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. This thesis attempts to develop the most adequate and efficient models for calculation of dynamic track load effects on railways track infrastructure, and to evaluate these dynamic effects on the track settlement, using a track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. A revision of the state of the knowledge regarding the track dynamics, the modelling of the vehicle, the track and the interaction between them is included. An overview related to the track deterioration and the factors influencing the track settlement is also done. For the first research of this thesis, the different models of vehicle, track and the modelling of the interaction between both have been developed. In the vehicle-track interaction, the node-surface contact formulation to establish the identification of the surfaces in contact and the Lagrange multipliers method to enforce contact constraint are used. The interaction model has been verified by contrast with some benchmarks reported in the literature. Considering the nonlinear contact between wheel-rail and the track irregularities, the dynamic effects on the vehicle-track system have been evaluated and compared, for different speeds of the vehicle, in aspects as vehicle vibration, contact force, force transmitted in railpads, rail vibration. A study of the influence of the properties of the track components on the the dynamic response of the vehicle-track system has been done. The track settlement model is developed that consist of the Bochum accumulation model and the hipoplasticity model in the user subroutine \UMAT" of the program ABAQUS. The numerical implementation has been verified by comparing the numerical results with those reported in the literature. The geometric quality of the ballast track has been evaluated with real data of auscultation provided by ADIF (2012). The simulation methodology has been proposed, using the settlement model for the ballast material, to reproduce the deterioration of the track geometry. The profiles of the longitudinal level of the auscultation is used as initial profiles of the track irregularities in the numerical simulation. The influence of the running speed on the track deterioration is also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physical model based on moving constant loads is widely used for the analysis of railway bridges. Nevertheless, this model is not well-suited for the study of short span bridges (L<=15-20 m), and the results it produces (displacements and accelerations) are much greater than those obtained experimentally. In this paper two factors are analysed which are believed to have an influence in the dynamic behaviour of short bridges. These two factors are not accounted for by the moving loads model and are the following: the distribution of the loads due to the presence of the sleepers and ballast layer, and the train-bridge interaction. Several numerical simulations have been performed in order to decide on their influence, and the results are presented and discussed herein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated analytically and numerically using mathematical models. A simplified feedback model for wear-type rail corrugation that includes a wheel pass time delay is developed with an aim to analytically distil the most critical interaction occurring between the wheel/rail structural dynamics, rolling contact mechanics and rail wear. To this end, a stability analysis on the complete system is performed to determine the growth of wear-type rail corrugations over multiple wheelset passages. This analysis indicates that although the dynamical behaviour of the system is stable for each wheel passage, over multiple wheelset passages, the growth of wear-type corrugations is shown to be the result of instability due to feedback interaction between the three primary components of the model. The corrugations are shown analytically to grow for all realistic railway parameters. From this analysis an analytical expression for the exponential growth rate of corrugations in terms of known parameters is developed. This convenient expression is used to perform a sensitivity analysis to identify critical parameters that most affect corrugation growth. The analytical predictions are shown to compare well with results from a benchmarked time-domain finite element model. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an integral part of infrastructure maintenance and management systems due to socio-economic, safety and security reasons. The behaviour of a structure under vibration depends on structure characteristics. The change of structure characteristics may suggest the change in system behaviour due to the presence of damage(s) within. Therefore the consistent, output signal guided, and system dependable markers would be convenient tool for the online monitoring, the maintenance, rehabilitation strategies, and optimized decision making policies as required by the engineers, owners, managers, and the users from both safety and serviceability aspects. SHM has a very significant advantage over traditional investigations where tangible and intangible costs of a very high degree are often incurred due to the disruption of service. Additionally, SHM through bridge-vehicle interaction opens up opportunities for continuous tracking of the condition of the structure. Research in this area is still in initial stage and is extremely promising. This PhD focuses on using bridge-vehicle interaction response for SHM of damaged or deteriorating bridges to monitor or assess them under operating conditions. In the present study, a number of damage detection markers have been investigated and proposed in order to identify the existence, location, and the extent of an open crack in the structure. The theoretical and experimental investigation has been conducted on Single Degree of Freedom linear system, simply supported beams. The novel Delay Vector Variance (DVV) methodology has been employed for characterization of structural behaviour by time-domain response analysis. Also, the analysis of responses of actual bridges using DVV method has been for the first time employed for this kind of investigation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pavements and bridges are subject to a continuous degradation due to traffic aggressiveness, ageing and environmental factors. A rational transport policy requires the monitoring of this transport infrastructure in order to provide adequate maintenance and guarantee the required levels of transport service and safety. This paper investigates the use of an instrumented vehicle fitted with accelerometers on its axles to monitor the dynamics of bridges. A simplified quarter carbridge interaction model is used in theoretical simulations and the natural frequency of the bridge is extracted from the spectra of the vehicle accelerations. The accuracy is better at lower speeds and for smooth road profiles. The structural damping of the bridge was also monitored for smooth and rough road profiles. The magnitude of peaks in the power spectral density of the vehicle accelerations decreased with increasing bridge damping and this decrease was easier to detect the smoother the road profile.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This work presents a program for simulations of vehicle-track and vehicle-trackstructure dynamic interaction . The method used is computationally efficient in the sense that a reduced number of coordinates is sufficient and doesn’t require high efficiency computers. The method proposes a modal substructuring approach of the system by modelling rails , sleepers and underlying structure with modal coordinates, the vehicle with physical lumped elements coordinates and by introducing interconnection elements between these structures (wheel-rail contact, railpads and ballast) by means of their interaction forces. The Frequency response function (FRF) is also calculated for both cases of track over a structure (a bridge, a viaduct ...) and for the simple vehicle-track program; for each case the vehicle effect on the FRF is then analyzed through the comparison of the FRFs obtained introducing or not a simplified vehicle on the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFB) are roadside structures used to separate moving traffic from work-zones. Numerical PWFB modelling is preferred in the design stages prior to actual testing. This paper aims to study the fluid-structure interaction of PWFB under vehicular impact using several methods. The strategy to treat water as non-structural mass was proposed and the errors were investigated. It was found that water can be treated with the FEA-NSM model for velocities higher than 80kmh-1. However, full SPH/FEA model is still the best treatment for water and necessary for lower impact velocities. The findings in this paper can be used as guidelines for modelling and designing PWFB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transition zones between bridge decks and rail tracks suffer early failure due to poor interaction between rail vehicles and sudden changes of stiffness. This has been an ongoing problem to rail industry and yet still no systematic studies appear to have been taken to maintain a gradually smoothening transmission of forces between the bridge and its approach. Differential settlement between the bridge deck and rail track in the transition zone is the fundamental issue, which negatively impacts the rail industry by causing passenger discomfort, early damage to infrastructure and vehicle components, speed reduction, and frequent maintenance cycles. Identification of mechanism of the track degradation and factors affecting is imperative to design any mitigation method for reducing track degradation rate at the bridge transition zone. Unfortunately this issue is still not well understood, after conducting a numbers of reviews to evaluate the key causes, and introducing a wide range of mitigation techniques. In this study, a comprehensive analysis of the available literature has been carried out to develop either a novel design framework or a mitigation technique for the bridge transition zone. This paper addresses three critical questions in relation to the track degradation at transition zone: (1) what are the causes of bridge transition track degradation?; (2) what are the available mitigation techniques in reducing the track degradation rate?; (3) what are the factors affecting on poor performance of the existing mitigation techniques?. It is found that the absence of soil-water response, dynamic loading response, and behaviour of geotechnical characteristics under long-term conditions in existing track transition design frameworks critically influence on the failures of existing mitigation techniques. This paper also evaluates some of the existing design frameworks to identify how each design framework addresses the track degradation at the bridge transition zone.