967 resultados para Vegetation management
Resumo:
Shipping list no.: 96-0253-P.
Resumo:
Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 similar to 30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.
Resumo:
In ecosystems driven by water availability, plant community dynamics depend on complex interactions between vegetation, hydrology, and human water resources use. Along ephemeral rivers—where water availability is erratic—vegetation and people are particularly vulnerable to changes in each other's water use. Sensible management requires that water supply be maintained for people, while preserving ecosystem health. Meeting such requirements is challenging because of the unpredictable water availability. We applied information gap decision theory to an ecohydrological system model of the Kuiseb River environment in Namibia. Our aim was to identify the robustness of ecosystem and water management strategies to uncertainties in future flood regimes along ephemeral rivers. We evaluated the trade-offs between alternative performance criteria and their robustness to uncertainty to account for both (i) human demands for water supply and (ii) reducing the risk of species extinction caused by water mining. Increasing uncertainty of flood regime parameters reduced the performance under both objectives. Remarkably, the ecological objective (species coexistence) was more sensitive to uncertainty than the water supply objective. However, within each objective, the relative performance of different management strategies was insensitive to uncertainty. The ‘best’ management strategy was one that is tuned to the competitive species interactions in the Kuiseb environment. It regulates the biomass of the strongest competitor and, thus, at the same time decreases transpiration, thereby increasing groundwater storage and reducing pressure on less dominant species. This robust mutually acceptable strategy enables species persistence without markedly reducing the water supply for humans. This study emphasises the utility of ecohydrological models for resource management of water-controlled ecosystems. Although trade-offs were identified between alternative performance criteria and their robustness to uncertain future flood regimes, management strategies were identified that help to secure an ecologically sustainable water supply.
Resumo:
There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.
Resumo:
Microcatchment water harvesting (MCWH) improved the survival and growth of planted trees on heavy soils in eastern Kenya five to six years after planting. In the best method, the cross-tied furrow microcatchments, the mean annual increments (MAI; based on the average biomass of living trees multiplied by tree density and survival) of the total and usable biomass in Prosopis juliflora were 2787 and 1610 kg ha-1 a-1 respectively, when the initial tree density was 500 to 1667 trees per hectare. Based on survival, the indigenous Acacia horrida, A. mellifera and A. zanzibarica were the most suitable species for planting using MCWH. When both survival and yield were considered, a local seed source of the introduced P. juliflora was superior to all other species. The MAI in MCWH was at best distinctly higher than that in the natural vegetation (163307 and 66111 kg ha-1 a-1 for total and usable biomass respectively); this cannot satisfy the fuelwood demand of concentrated populations, such as towns or irrigation schemes. The density of seeds of woody species in the topsoil was 40.1 seeds m-2 in the Acacia-Commiphora bushland and 12.6 seeds m-2 in the zone between the bushland and the Tana riverine forest. Rehabilitation of woody vegetation using the soil seed bank alone proved difficult due to the lack of seeds of desirable species. The regeneration and dynamics of woody vegetation were also studied both in cleared and undisturbed bushland. A sub-type of Acacia-Commiphora bushland was identified as Acacia reficiens bushland, in which the dominant Commiphora species is C. campestris. Most of the woody species did not have even-aged populations but cohort structures that were skewed towards young individuals. The woody vegetation and the status of soil nutrients were estimated to recover in 1520 years on Vertic Natrargid soils after total removal of above-ground vegetation.
Resumo:
Dense, monospecific cattail (Typha spp.) stands are a problem in many prairie wetlands because they alter habitat structure and function, resulting in a decrease in use by wildlife species. Cheyenne Bottoms Wildlife Area, a Wetland of International Importance in central Kansas, has experienced a large increase in cattails and a subsequent decrease in migratory wetland bird use. As a consequence, intensive cattail management is practiced. We assessed the effectiveness of prescribed burning, discing following prescribed burning, and cattle grazing following prescribed burning at two stocking rates of 5 and 20 head per 11 ha in suppressing cattail, as well as the effects of these treatments on non-cattail vegetation.
Resumo:
Dennis, P., Aspinall, R. J., Gordon, I. J. (2002). Spatial distribution of upland beetles in relation to landform vegetation and grazing management. Basic and Applied Ecology, 3 (2), 183?193. Sponsorship: SEERAD RAE2008
Resumo:
This thesis aims at improving the knowledge on the post-fire vegetation regeneration. For that, forests and shrublands were studied, after forest fires and experimental fires. Maritime Pine (Pinus pinaster) recruitment after fire was studied. Fire severity was evidenced as a major effect on this process. High crown fire severity can combust the pines, destroying the seed bank and impeding post fire pine recruitment. However, crown combustion also influences the post-fire conditions on the soil surface, since high crown combustion (HCC) will decrease the postfire needle cast. After low crown combustion (LCC) (scorched rather than torched crowns), a considerable needle cover was observed, along with a higher density of pine seedlings. The overall trends of post-fire recruitment among LCC and HCC areas could be significantly attributed to cover by needles, as well by the estimation of fire severity using the diameters of the burned twigs (TSI). Fire increased the germination from the soil seed bank of a Pinus pinaster forest, and the effects were also related with fire severity. The densities of seedlings of the dominant taxa (genus Erica and Calluna vulgaris) were contrastingly affected in relation to the unburned situation, depending on fire severity, as estimated from the degree of fire-induced crown damage (LCC/HCC), as well as using a severity index based on the diameters of remaining twigs (TSI). Low severity patches had an increase in germination density relatively to the control, while high severity patches suffered a reduction. After an experimental fire in a heathland dominated by Pterospartum tridentatum, Erica australis and E. umbellata, no net differences in seedling emergence were observed, in relation to the pre-fire situation. However, rather than having no effect, the heterogeneity of temperatures caused by fire promoted caused divergent effects over the burned plot in terms of Erica australis germination – a progressive increased was observed in the plots were maximum temperature recorded ranged from 29 to 42.5ºC and decreased in plots with maximum temperature ranging from 51.5 to 74.5ºC. In this heathland, the seed density of two of the main species (E. australis and E. umbellata) was higher under their canopies, but the same was not true for P. tridentatum. The understory regeneration in pine and eucalypt stands, 5 to 6 years post fire, has been strongly associated with post-fire management practices. The effect of forest type was, comparatively, insignificant. Soil tilling, tree harvesting and shrub clearance, were linked to lower soil cover percentages. However, while all these management operations negatively affected the cover of resprouters, seeders were not affected by soil tilling. A strong influence of biogeographic region was identified, suggesting that more vulnerable regions may suffer higher effects of management, even under comparatively lower management pressure than more productive regions. This emphasizes the need to adequate post-fire management techniques to the target regions.
Resumo:
The expansion of the cellulosic biofuels industry throughout the United States has broad-scale implications for wildlife management on public and private lands. Knowledge is limited on the effects of reverting agriculture to native grass, and vice versa, on size of home range and habitat use of white-tailed deer (Odocoileus virginianus). We followed 68 radio-collared female deer from 1991 through 2004 that were residents of DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska, USA. The refuge was undergoing conversion of vegetation out of row-crop agriculture and into native grass, forest, and emergent aquatic vegetation. Habitat in DNWR consisted of 30% crop in 1991 but removing crops to establish native grass and wetland habitat at DNWR resulted in a 44% reduction in crops by 2004. A decrease in the amount of crops on DNWR contributed to a decline in mean size of annual home range from 400 ha in 1991 to 200 ha in 2005 but percentage of crops in home ranges increased from 21% to 29%. Mean overlap for individuals was 77% between consecutive annual home ranges across 8 years, regardless of crop availability. Conversion of crop to native habitat will not likely result in home range abandonment but may impact disease transmission by increasing rates of contact between deer social groups that occupy adjacent areas. Future research on condition indices or changes in population parameters (e.g., recruitment) could be incorporated into the study design to assess impacts of habitat conversion for biofuel production.
Resumo:
"With the assistance of the Public Works and Community Development Departments, City of Highland Park, Illinois."
Resumo:
The maintenance of species richness is often a priority in the management of nature reserves, where consumptive use of resources is generally prohibited. The purpose of this research was to improve management by understanding the vegetation dynamics in the lowlands of Nepal. The objectives were to determine vegetation associations in relation to environments and human-induced disturbances that affect vegetation dynamics on floodplains, where upstream barrages had altered flooding patterns, and consumptive use of plant resources was influencing natural processes. Floodplain vegetation in relation to physical environments and disturbances were studied along transects, perpendicular to the course of the Mahakali River in the western Terai, Nepal. Forest structural changes were studied for three years in ten plots. A randomized split-block experiment with nine burning and grazing treatments was performed in seasonally flooded grasslands. A semi-structured questionnaire was used to assess people's socio-economic status, natural resource use patterns and conservation attitudes. ^ Elevation, soil organic matter, nitrogen, percentage of sand and grazing intensity were significant in delineating herbaceous vegetation assemblages, whereas elevation and livestock grazing were significant in defining forest type boundaries. On the floodplain islands, highly grazed Dalbergia sissoo-Acacia catechu forests were devoid of understory woody vegetation, but the lightly grazed D. sissoo-mixed forests had a well-developed second canopy layer, comprising woody species other than D. sissoo and A. catechu. In grasslands, species richness and biomass production were highest at intermediate disturbance level represented by the lightly grazed and ungrazed early-burned treatments. Ethnicity, education and resource use patterns were important in influencing conservation attitudes. A succession towards the mixed forests would occur in D. sissoo-dominated floodplain forests, where dams and barrages reduce flooding and associated fluvial processes, and if livestock grazing is stopped, as occasionally suggested by nature conservationists. In seasonally flooded grasslands, early burning with moderate grazing would enhance the species diversity and productivity. There is a need to implement a participatory integrated wetland management plan, to include community development, education and off farm income generation, to assure participatory conservation and management of wetlands in Nepal. ^
Resumo:
The hydrologic regime of Shark Slough, the most extensive long hydroperiod marsh in Everglades National Park, is largely controlled by the location, volume, and timing of water delivered to it through several control structures from Water Conservation Areas north of the Park. Where natural or anthropogenic barriers to water flow are present, water management practices in this highly regulated system may result in an uneven distribution of water in the marsh, which may impact regional vegetation patterns. In this paper, we use data from 569 sampling locations along five cross-Slough transects to examine regional vegetation distribution, and to test and describe the association of marsh vegetation with several hydrologic and edaphic parameters. Analysis of vegetation:environment relationships yielded estimates of both mean and variance in soil depth, as well as annual hydroperiod, mean water depth, and 30-day maximum water depth within each cover type during the 1990’s. We found that rank abundances of the three major marsh cover types (Tall Sawgrass, Sparse Sawgrass, and Spikerush Marsh) were identical in all portions of Shark Slough, but regional trends in the relative abundance of individual communities were present. Analysis also indicated clear and consistent differences in the hydrologic regime of three marsh cover types, with hydroperiod and water depths increasing in the order Tall Sawgrass , Sparse Sawgrass , Spikerush Marsh. In contrast, soil depth decreased in the same order. Locally, these differences were quite subtle; within a management unit of Shark Slough, mean annual values for the two water depth parameters varied less than 15 cm among types, and hydroperiods varied by 65 days or less. More significantly, regional variation in hydrology equaled or exceeded the variation attributable to cover type within a small area. For instance, estimated hydroperiods for Tall Sawgrass in Northern Shark Slough were longer than for Spikerush Marsh in any of the other regions. Although some of this regional variation may reflect a natural gradient within the Slough, a large proportion is the result of compartmentalization due to current water management practices within the marsh.We conclude that hydroperiod or water depth are the most important influences on vegetation within management units, and attribute larger scale differences in vegetation pattern to the interactions among soil development, hydrology and fire regime in this pivotal portion of Everglades.
Resumo:
Ecosystem management practices that modify the major drivers and stressors of an ecosystem often lead to changes in plant community composition. This paper examines how closely the trajectory of vegetation change in seasonally-flooded wetlands tracks management-induced alterations in hydrology and soil characteristics. We used trajectory analysis, a multivariate method designed to test hypotheses about rates and directions of community change, to examine vegetation shifts in response to changes in water management practices within the Taylor Slough basin of Everglades National Park. We summarized vegetation data by non-metric multidimensional scaling ordination, and examined the time trajectory of each site along environmental vectors representing hydrology and soil phosphorus gradients. In the Taylor Slough basin, vegetation change trajectories closely followed the hydrologic changes caused by the operation of water pumps and detention ponds adjacent to the canals. We also observed a shift in vegetation composition along a vector of increasing soil phosphorus, which suggests the need for implementing measures to avoid P-enrichment in southern Everglades marl prairies. This study indicates that shifts in vegetation composition in response to changes in hydrologic conditions and associated parameters may be detected through trajectory analysis, thereby providing feedback for adaptive management of wetland ecosystems.