997 resultados para Vascular occlusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous studies using bilateral carotid occlusion in conscious freely moving rats we suggested that aortic baroreceptors may play a more important role in the regulation of hindlimb than in renal and mesenteric vascular resistances. In the present study we performed electrical stimulation of the aortic baroreceptor nerve and analyzed the changes in mean arterial pressure and in hindlimb, renal, and mesenteric vascular resistances. All the experiments were performed under urethan anesthesia. Unilateral electrical stimulation (3 V, 2 ms, 50 Hz) of the aortic baroreceptor nerve produced a fall in arterial pressure (-27 +/- 3 mmHg) and an important reduction in hindlimb vascular resistance (-43 +/- 5%), with an increase in renal (+3 +/- 14%) and mesenteric (+48 +/- 12%) vascular resistances. Similar changes in arterial pressure as well as in the resistance of the three vascular beds studied were also observed during electrical stimulation of the aortic baroreceptor nerve in rats with bilateral carotid baroreceptor denervation or in rats treated with methylatropine. The data obtained with electrical stimulation indicated that aortic baroreceptors play a more important role in the regulation of blood flow in hindlimb than in renal and mesenteric vascular beds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of a single intravitreal bevacizumab injection on visual acuity, contrast sensitivity and optical coherence tomography-measured central macular thickness in eyes with macular edema from branch retinal vein occlusion. Methods: Seventeen eyes of 17 patients with macular edema from unilateral branch retinal vein occlusion were treated with a single bevacizumab injection. Patients were submitted to a complete evaluation including best corrected visual acuity, contrast sensitivity and optical coherence tomography measurements before treatment and one and three months after injection. Visual acuity, contrast sensitivity and optical coherence tomography measurements were compared to baseline values. Results: Mean visual acuity measurement improved from 0.77 logMAR at baseline to 0.613 logMAR one month after injection (P=0.0001) but worsened to 0.75 logMAR after three months. Contrast sensitivity test demonstrated significant improvement at spatial frequencies of 3, 6, 12 and 18 cycles/degree one month after injection and at the spatial frequency of 12 cycles/degree three months after treatment. Mean +/- standard deviation baseline central macular thickness (552 +/- 150 mu m) reduced significantly one month (322 +/- 127 mu m, P=0.0001) and three months (439 perpendicular to 179 mu m, P=0.01) after treatment. Conclusions: Bevacizumab injection improves visual acuity and contrast sensitivity and reduces central macular thickness one month after treatment. Visual acuity returns to baseline levels at the 3-month follow-up, but some beneficial effect of the treatment is still present at that time, as evidenced by optical coherence tomography-measured central macular thickness and contrast sensitivity measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on oxygenation changes noninvasively recorded by multichannel continuous-wave near infrared spectroscopy (CW-NIRS) during endovascular neuroradiologic interventions requiring temporary balloon occlusion of arteries supplying the cerebral circulation. Digital subtraction angiography (DSA) provides reference data on the site, timing, and effectiveness of the flow stagnation as well as on the amount and direction of collateral circulation. This setting allows us to relate CW-NIRS findings to brain specific perfusion changes. We focused our analysis on the transition from normal perfusion to vessel occlusion, i.e., before hypoxia becomes clinically apparent. The localization of the maximal response correlated either with the core (occlusion of the middle cerebral artery) or with the watershed areas (occlusion of the internal carotid artery) of the respective vascular territories. In one patient with clinically and angiographically confirmed insufficient collateral flow during carotid artery occlusion, the total hemoglobin concentration became significantly asymmetric, with decreased values in the ipsilateral watershed area and contralaterally increased values. Multichannel CW-NIRS monitoring might serve as an objective and early predictive marker of critical perfusion changes during interventions-to prevent hypoxic damage of the brain. It also might provide valuable human reference data on oxygenation changes as they typically occur during acute stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Venous angioplasty with stenting of iliac veins is an important treatment option for patients suffering from post-thrombotic syndrome due to chronic venous obstruction. Interventional treatment of a chronically occluded vena cava, however, is challenging and often associated with failure. We describe a case of a chronic total occlusion of the entire inferior vena cava that was successfully recanalized using bidirectional wire access and a balloon puncture by a re-entry catheter to establish patency of the inferior vena cava.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neovascularization that generates collateral blood flow can limit the extent of tissue damage after acute ischemia caused by occlusion of the primary blood supply. The neovascular response stimulated by the BB homodimeric form of recombinant platelet-derived growth factor (PDGF-BB) was evaluated for its capacity to protect tissue from necrosis in a rat skin flap model of acutely induced ischemia. Complete survival of the tissue ensued, when the original nutritive blood supply was occluded, as early as 5 days after local PDGF-BB application, and the presence of a patent vasculature was evident compared to control flaps. To further evaluate the vascular regenerative response, PDGF-BB was injected into the muscle/connective tissue bed between the separated ends of a divided femoral artery in rats. A patent new vessel that functionally reconnected the ends of the divided artery within the original 3- to 4-mm gap was regenerated 3 weeks later in all PDGF-BB-treated limbs. In contrast, none of the paired control limbs, which received vehicle with an inactive variant of PDGF-BB, had vessel regrowth (P < 0.001). The absence of a sustained inflammatory response and granulation tissue suggests locally delivered PDGF-BB may directly stimulate the angiogenic phenotype in endothelial cells. These findings indicate that PDGF-BB can generate functional new blood vessels and nonsurgically anastomose severed vessels in vivo. This study supports the possibility of a therapeutic modality for the salvage of ischemic tissue through exogenous cytokine-induced vascular reconnection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Educação Física, Programa de Pós-Graduação Stricto-Sensu em Educação Física, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate whether venous occlusion plethysmography (VOP) may be used to measure high rates of arterial inflow associated with exercise, venous occlusions were performed at rest, and following dynamic handgrip exercise at 15, 30, 45, and 60 % of maximum voluntary contraction (MVC) in seven healthy males. The effect of including more than one cardiac cycle in the calculation of blood flow was assessed by comparing the cumulative blood flow over one, two, three, or four cardiac cycles. The inclusion of more than one cardiac cycle at 30 and 60 % MVC, and more than two cardiac cycles at 15 and 45 % MVC resulted in a lower blood flow compared to using only the first cardiac cycle (P < 0.05). Despite the small time interval over which arterial inflow was measured (~1 second), this did not affect the reproducibility of the technique. Reproducibility (coefficient of variation for arterial inflow over three trials) tended to be poorer at the higher workloads, although this was not significant (12.7 ± 6.6 %, 16.2 ± 7.3 %, and 22.9 ± 9.9 % for the 15, 30, and 45 % MVC workloads; P=0.102). There was also a tendency for greater reproducibility with the inclusion of more cardiac cycles at the highest workload, but this did not reach significance (P=0.070). In conclusion, when calculated over the first cardiac cycle only during venous occlusion, high rates of FBF can be measured using VOP, and this can be achieved without a significant decrease in the reproducibility of the measurement.