999 resultados para VERTICAL OZONE PROFILE
Resumo:
En la presente tesis se estudian los contenidos geoquímicos de los sedimentos de llanura de inundación en diversas cuencas fluviales seleccionadas con el objetivo de contribuir a un mejor conocimiento de sus condiciones medioambientales. En cada cuenca, se ha muestreado un perfil vertical de llanura de inundación, dividiéndolo en tramos que generalmente corresponden a diferentes episodios de inundación. Estos sedimentos se depositan durante los episodios de crecidas una vez que la corriente sobrepasa los límites del canal. Se caracterizan normalmente por tener un tamaño de grano fino y una estructura en capas horizontales que corresponden a los sucesivos episodios de inundación. Muestran dos ventajas principales con respecto a otros medios de muestreo en geoquímica como suelos o sedimentos de corriente: • Pueden almacenar sedimento antiguo así como actual, con lo que se puede estudiar la historia geoquímica de una zona específica en un mismo punto de muestreo (perfil vertical). • Los sedimentos de llanuras de inundación son capaces de caracterizar grandes áreas de drenaje. El origen de los sedimentos es más diverso que en el sedimento de corriente, debido a las mayores áreas de donde proceden las aguas de las avenidas. Las cuencas han sido seleccionadas según las actividades antropogénicas que en ellas se llevan a cabo, en concreto, actividades urbanas e industriales, minería y agricultura. Así mismo, se han estudiado, como referencia, dos cuencas donde no se espera encontrar ningún tipo de actividad contaminante. Una vez hecha la selección, los sedimentos aluviales de las cuencas se han estudiado cuidadosamente para asegurar que no existen depósitos de acreción lateral en el punto seleccionado. Posteriormente se ha procedido al muestreo del perfil vertical. Las muestras han sido analizadas mediante ICP-MS (ataque total) e INAA para conocer los contenidos totales de los elementos traza y mayoritarios. Los análisis de la fracción extraíble se han llevado a cabo mediante ICP-MS (ataque con agua regia). Así mismo, algunas muestras seleccionadas han sido sometidas a una extracción secuencial para un estudio más detallado. La presencia de materia orgánica ha sido estimada mediante el análisis de Carbono Orgánico Total (TOC). Finalmente, se ha llevado a cabo un análisis de isótopos de Pb en muestras escogidas en los perfiles, con el objetivo de hacer una evaluación ambiental. Los contenidos metálicos aumentan hacia la superficie en algunos de los perfiles, mientras en otros muestran una distribución muy constante exceptuando algún nivel específico con un aumento de los contenidos de la mayoría de los metales. Ha sido posible determinar la influencia de las actividades antropogénicas en algunos de los perfiles. Aquellos que pertenecen a cuencas mineras, urbanas o industrializadas muestran generalmente altos contenidos en elementos metálicos. Es el caso de los perfiles muestreados en los ríos Odiel y Tinto, Besaya, Besós y Manzanares. Algunos de estos perfiles pueden incluso correlacionarse con periodos de tiempo en los que ha tenido lugar una actividad antropogénica más intensa. Los perfiles que mejor se correlacionan con la actividad antropogénica de la cuenca son el perfil de Rivas en el río Manzanares (Madrid), que refleja un crecimiento de la contaminación producida por las actividades urbana e industrial en las últimas décadas, y el río Tinto, que muestra un crecimiento llamativo de los contenidos en su mayoría metálicos que puede estar relacionado con el incremento de la actividad minera que tuvo lugar hace aproximadamente 125 años. El análisis de los isótopos de Pb ha resultado ser una herramienta útil en la evaluación ambiental de estos sedimentos. Con este estudio y mediante la comparación con fuentes naturales y antropogénicas, ha sido posible diferenciar las muestras afectadas por diferentes fuentes de plomo, así como detectar las más afectadas antropogénicamente. ABSTRACT The geochemical composition of overbank sediments of some selected river basins is studied in this thesis in order to contribute to a better knowledge of the environmental conditions surrounding them. In each basin a vertical overbank profile has been sampled, dividing it into stretches that usually correspond to different flood events. The overbank sediments are those deposited during a flood event once the flow spills over the channel banks. They are usually characterized by a very fine grain size and a structure of horizontal layers, which correspond to successive flood events. These sediments show two main advantages regarding other sampling media in geochemistry, like soils or stream sediments: • They can store sediment deposited in the past as well as in current times, so that the history of a specific location can be studied at the very same point (vertical profile). • The overbank sediments are able to characterize a large drainage area. The origin of the sediment is wider than in the stream sediments due to the larger areas where the flood water comes from. The basins have been selected depending on the anthropogenic activities developed in them, namely, urban and industrial activities, mining activities and agricultural activities. As well, two pristine basins have been studied as a reference. Afterwards, the alluvial sediments in the basins have been carefully studied in order to sample a vertical profile and make sure that lateral accretion materials are not present in the profile. The samples have been analysed by ICP-MS (total digestion) and INAA to know the total contents of trace and major elements. Analysis of the mobile fraction has been carried out by ICP-MS (aqua regia); as well some of the samples have been subjected to sequential extraction for a more detailed study. The presence of organic matter has been estimated by the analysis of the Total Organic Carbon (TOC). Finally, a lead isotope analysis of some of the samples in the profiles was carried out in order to make an environmental assessment. Metal contents grow towards the surface in some of the profiles, while others show a very steady distribution, except for some of them with a growth of most of the metals in a specific level. XI It has been possible to determine the influence of the anthropogenic activities in some of the profiles. The ones that belong to mining and urban or industrialized basins show generally high contents of metal elements. This is the case of the profiles sampled in the Odiel and Tinto Rivers, the Besaya River, the Besós River and the Manzanares River. Some of these profiles can even correlate with the periods of time when a more intense activity in their respective basins has taken place. The profiles which best correlate with the anthropogenic activity are the Rivas profile in the Manzanares River, which reflects a growth of the pollution produced by urban and industrial activities in the city of Madrid in the last decades and the Tinto profile, which shows a very dramatic growth of the elemental contents (mostly metals) which can be related to the increase of the mining activities that took place in the last 125 years. The analysis of lead isotopes has turned out to be a powerful tool in the environmental assessment in this type of sediments. With this study and through the comparison with natural and anthropogenic sources, it has been possible to determine samples affected by different sources of lead and to detect the most anthropogenicaly affected ones.
Resumo:
On 22 May 1985 the first balloon-borne ozonesonde was successfully launched by the staff of Georg-Forster-Station (70°46' S, 11°41' E). The following weekly ozone soundings mark the beginning of the continuous investigation of Germany to study the vertical ozone distribution in the southern hemisphere. In 1985 these ozone soundings have been the only record showing the change of vertical ozone distribution in the southern polar stratosphere in September and October. The regular ozone soundings from 1985 until 1992 are a valuable reference data set since the chemical ozone loss became a significant feature in the southern polar stratosphere. The balloon-borne soundings were performed at the upper air sounding facility of the neighbouring station Novolazarevskaya, just 2 km apart from Georg-Forster-Station. Till 1992, ozone soundings were taken without interruption. Afterwards, the ozone sounding program was moved to Neumayer-Station (70°39' S, 8°15' W) 750 km further west.
Resumo:
Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.
Resumo:
Traditional air delivery to high-bay buildings involves ceiling level supply and return ducts that create an almost-uniform temperature in the space. Problems with this system include potential recirculation of supply air and higher-than-necessary return air temperatures. A new air delivery strategy was investigated that involves changing the height of conventional supply and return ducts to have control over thermal stratification in the space. A full-scale experiment using ten vertical temperature profiles was conducted in a manufacturing facility over one year. The experimental data was utilized to validated CFD and EnergyPlus models. CFD simulation results show that supplying air directly to the occupied zone increases stratification while holding thermal comfort constant during the cooling operation. The building energy simulation identified how return air temperature offset, set point offset, and stratification influence the building’s energy consumption. A utility bill analysis for cooling shows 28.8% HVAC energy savings while the building energy simulation shows 19.3 – 37.4% HVAC energy savings.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes.
Resumo:
Vertical soundings of the atmospheric ion production rate have been obtained from Geiger counters integrated with conventional meteorological radiosondes. In launches made from Reading (UK) during 2013-2014, the Regener-Pfotzer ionisation maximum was at an altitude equivalent to a pressure of (63.1±2.4) hPa, or, expressed in terms of the local air density, (0.101±0.005) kgm−3. The measured ionisation profiles have been evaluated against the Usoskin-Kovaltsov model and, separately, surface neutron monitor data from Oulu. Model ionisation rates agree well with the observed cosmic ray ionisation below 20 km altitude. Above 10 km, the measured ionisation rates also correlate well with simultaneous neutron monitor data, although, consistently with previous work, measured variability at the ionisation maximum is greater than that found by the neutron monitor. However, in the lower atmosphere (below 5 km altitude), agreement between the measurements and simultaneous neutron monitor data is poor. For studies of transient lower atmosphere phenomena associated with cosmic ray ionisation, this indicates the need for in situ ionisation measurements and improved lower atmosphere parameterisations.
Resumo:
Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change) UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF) needed for the conversion of O-3 slant column densities into vertical column amounts. The most important improvement is the use of O-3 AMF look-up tables calculated using the TOMS V8 (TV8) O-3 profile climatology, that allows accounting for the dependence of the O-3 AMF on the seasonal and latitudinal variations of the O-3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Systeme d'Analyse par Observation Zenithale) network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOMEGDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44 degrees N, 5.5 degrees E) and Sodankyla (67 degrees N, 27 degrees E), respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O-3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i) a possible problem in the satellite retrieval algorithms in dealing with the temperature dependence of the ozone cross-sections in the UV and the solar zenith angle (SZA) dependence, (ii) zonal modulations and seasonal variations of tropospheric ozone columns not accounted for in the TV8 profile climatology, and (iii) uncertainty on the stratospheric ozone profiles at high latitude in the winter in the TV8 climatology. For those measurements mostly sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, or to SZA like SCIAMACHY-TOSOMI, the application of temperature and SZA corrections results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.
Resumo:
Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric Composition Change) ozone radiometer measuring at Bern.