952 resultados para VASOPRESSIN RELEASE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In both normally hydrated and volume-expanded rats, there was a biphasic effect of corticotropin-releasing hormone (CRH) (1–10 μg, i.v.) on renal function. Within the first hour, CRH caused antidiuresis, antinatriuresis, and antikaliuresis together with reduction in urinary cGMP output that, in the fourth hour, were replaced by diuresis, natriuresis, and kaliuresis accompanied by increased cGMP output. Plasma arginine vasopressin (AVP) concentrations increased significantly within 5 min, reached a peak at 15 min, and declined by 30 min to still-elevated values maintained for 180 min. Changes in plasma atrial natriuretic peptide (ANP) were the mirror image of those of AVP. Plasma ANP levels were correlated with decreased ANP in the left ventricle at 30 min and increased ANP mRNA in the right atrium at 180 min. All urinary changes were reversed by a potent AVP type 2 receptor (V2R) antagonist. Control 0.9% NaCl injections evoked an immediate increase in blood pressure and heart rate measured by telemetry within 3–5 min. This elevation of blood pressure was markedly inhibited by CRH (5 μg). We hypothesize that the effects are mediated by rapid, direct vasodilation induced by CRH that decreases baroreceptor input to the brain stem, leading to a rapid release of AVP that induces the antidiuresis by direct action on the V2Rs in the kidney. Simultaneously, acting on V2Rs in the heart, AVP inhibits ANP release and synthesis, resulting in a decrease in renal cGMP output that is responsible for the antinatriuretic and antikaliuretic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Long-term ethanol intake has been reported to evoke both hypertension and increase of systemic vasopressin levels in rats. METHODS In this work, we investigated the involvement of systemic vasopressin in the hypertension evoked in rats by long-term ethanol (20% vol/vol) intake for 2 weeks, by systemic treatment with the VI-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg). Moreover, plasma arginine-vasopressin (AVP) content was quantified using an AVP radioimmunoassay and the expression of vasopressin mRNA in the supraoptic (SON) and paraventricular (PVN) nuclei was measured using real-time PCR. RESULTS Mild hypertension was observed after 2 weeks of ethanol treatment when compared with control animals. Moreover, an increase in both the expression of vasopressin mRNA and the vasopressin blood content was observed in ethanol-treated rats in comparison to the OF control group. Basal blood pressure levels of ethanol-treated animals were significantly reduced by IV treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVR However, dTyr(CH2)5(Me) AVP had no effect on the blood pressure of control animals. CONCLUSIONS The results indicate that mild hypertension is already observed at an early phase of ethanol consumption in rats. Because the content of circulating vasopressin was increased in ethanol-treated rats and their basal blood pressure returned to control levels after IV treatment with a VI-vasopressin receptor antagonist, it is proposed that increased circulating vasopressin content may mediate the hypertension observed in ethanol-treated rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min. sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVP(P)) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVP(P) at all time points, except 24 h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVP(P) remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether arginine vasopressin releases endothelium-derived nitric oxide (EDNO) from the epicardial coronary artery. METHODS: We studied segments of canine left circumflex coronary arteries suspended in organ chambers to measure isometric force. The coronary artery segments were contracted with prostaglandin F2alpha (2 x 10-6M) and exposed to a unique, strong arginine vasopressin concentration (10-6M) or titrated concentrations (10-9 a 10-5 M). RESULTS: The unique dose of arginine vasopressin concentration (10-6M) induced transient, but significant (p<0.05), relaxation in arterial segments with endothelium, and an increase, not significant, in tension in arteries without endothelium. Endothelium-dependent relaxation to arginine vasopressin was inhibited by Ng-monomethyl-L-arginine (L-NMMA, 10-5M) or N G-nitro-L-arginine (L-NOARG) (10-4M), 2 inhibitors of nitric oxide synthesis from L-arginine. Exogenous L-arginine (10-4M), but not D-arginine (10-4M), reversed the inhibitory effect of L-NMMA on vasopressin-mediated vasorelaxation. Endothelium dependent relaxation to vasopressin was also reversibly inhibited by the vasopressin V1-receptor blocker d(CH2)5Try(Me) arginine vasopressin (10-6M) (n=6, P<0.05). CONCLUSION: Vasopressin acts through V1 endothelial receptors to stimulate nitric oxide release from L-arginine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxytocin (OT) and vasopressin (VP) are two closely related neuropeptides, widely known for their peripheral hormonal effects. Specific receptors have also been found in the brain, where their neuromodulatory actions have meanwhile been described in a large number of regions. Recently, it has become possible to study their endogenous neuropeptide release with the help of OT/VP promoter-driven expression of fluorescent proteins and light-activated ion channels. In this review, I summarize the neuromodulatory effects of OT and VP in different brain regions by grouping these into different behavioral systems, highlighting their concerted, and at times opposite, effects on different aspects of behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of thiopentone/halothane anaesthesia on the release of endogenous opioid, adrenocorticotrophin, arginine vasopressin, cortisol and catecholamine was investigated in ponies. The contribution made by halothane itself was studied by maintaining six ponies with a constant 12 per cent end tidal halothane concentration and five with a concentration ranging between 0.8 and 12 per cent. Cardiorespiratory depression was more prolonged in the ponies receiving a constant 1-2 per cent end tidal halothane concentration than in those which received less halothane. Plasma lactate concentration increased and haematocrit decreased during halothane anaesthesia. The concentrations of met-enkephalin, dynorphin and catecholamines did not change and those of β-endorphin, adrenocorticotrophin, arginine vasopressin and cortisol increased during halothane anaesthesia. Halothane appeared to be a major stimulus to pituitary adrenocortical activation because the adrenocortical secretion was proportional to the amount of halothane inhaled. β-endorphin increased proportionally more than adrenocorticotrophin and their plasma concentrations were not correlated, suggesting that they have independent secretion mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-alpha by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 mu g of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A growing body of evidence indiates that carbon monoxide (CO) acts as a gas neurotransmitter within the central nervous system. Although CO has been shown to affect neurohypophyseal hormone release in response to osmotic stimuli, the precise sources, targets and mechanisms underlying the actions of CO within the magnocellular neurosecretory system remain largely unknown. In the present study, we combined immunohistochemistry and patch-clamp electrophysiology to study the cellular distribution of the CO-synthase enzyme heme oxygenase type 1 (HO-1), as well as the actions of CO on oxytocin (OT) and vasopressin (VP) magnocellular neurosecretory cells (MNCs), in euhydrated (EU) and 48-h water-deprived rats (48WD). Our results show the expression of HO-1 immunoreactivity both in OT and VP neurones, as well as in a small proportion of astrocytes, both in supraoptic (SON) and paraventricular (PVN) nuclei. HO-1 expression, and its colocalisation with OT and VP neurones within the SON and PVN, was significantly enhanced in 48WD rats. Inhibition of HO activity with chromium mesoporphyrin IX chloride (CrMP; 20 mu m) resulted in a slight membrane hyperpolarisation in SON neurones from EU rats, without significantly affecting their firing activity. In 48WD rats, on the other hand, CrMP resulted in a more robust membrane hyperpolarisation, significantly decreasing neuronal firing discharge. Taken together, our results indicate that magnocellular SON and PVN neurones express HO-1, and that CO acts as an excitatory gas neurotransmitter in this system. Moreover, we found that the expression and actions of CO were enhanced in water-deprived rats, suggesting that the state-dependent up-regulation of the HO-1/CO signalling pathway contributes to enhance MNCs firing activity during an osmotic challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: To describe the effects of arginine vasopressin other than its vasoconstrictive and antidiuretic potential in vasodilatory shock. RECENT FINDINGS: Arginine vasopressin influences substrate metabolism by stimulation of hepatic glucose release, gluconeogenesis, ureogenesis and fatty acid esterification. Although arginine vasopressin is a secretagogue of different hormones, only prolactin increases during arginine vasopressin therapy. Plasmatic and cellular coagulation are affected by arginine vasopressin, resulting in thrombocyte aggregation. Therefore, platelet count typically decreases following arginine vasopressin infusion in critically ill patients. In addition, arginine vasopressin reduces bile flow and may increase bilirubin concentrations. Despite its potential to decrease serum sodium, no change in electrolytes was observed in critically ill patients receiving arginine vasopressin. Although arginine vasopressin is an endogenous antipyretic, body temperature is not decreased by central venous arginine vasopressin infusion. In addition, arginine vasopressin modulates immune function through V1 receptors. Compared with norepinephrine, arginine vasopressin may have protective effects on endothelial function. Net arginine vasopressin effects on gastrointestinal motility seem to be inhibitory and are dose dependent. SUMMARY: Except for its antidiuretic and vasoconstrictive actions, the effects of arginine vasopressin in patients with vasodilatory shock have so far only been partially examined. Potential influences of arginine vasopressin on metabolism and immune, liver and mitochondrial function remain to be assessed in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intercellular communication among certain cell types can occur via ATP secretion, which leads to stimulation of nucleotide receptors on target cells. In epithelial cells, however, intercellular communication is thought to occur instead via gap junctions. Here we examined whether one epithelial cell type, hepatocytes, can also communicate via nucleotide secretion. The effects on cytosolic Ca2+ ([Ca2+]i) of mechanical stimulation, including microinjection, were examined in isolated rat hepatocytes and in isolated bile duct units using confocal fluorescence video microscopy. Mechanical stimulation of a single hepatocyte evoked an increase in [Ca2+]i in the stimulated cell plus an unexpected [Ca2+]i rise in neighboring noncontacting hepatocytes. Perifusion with ATP before mechanical stimulation suppressed the [Ca2+]i increase, but pretreatment with phenylephrine did not. The P2 receptor antagonist suramin inhibited these intercellular [Ca2+]i signals. The ATP/ADPase apyrase reversibly inhibited the [Ca2+]i rise induced by mechanical stimulation, and did not block vasopressin-induced [Ca2+]i signals. Mechanical stimulation of hepatocytes also induced a [Ca2+]i increase in cocultured isolated bile duct units, and this [Ca2+]i increase was inhibited by apyrase as well. Finally, this form of [Ca2+]i signaling could be elicited in the presence of propidium iodide without nuclear labeling by that dye, indicating that this phenomenon does not depend on disruption of the stimulated cell. Thus, mechanical stimulation of isolated hepatocytes, including by microinjection, can evoke [Ca2+]i signals in the stimulated cell as well as in neighboring noncontacting hepatocytes and bile duct epithelia. This signaling is mediated by release of ATP or other nucleotides into the extracellular space. This is an important technical consideration given the widespread use of microinjection techniques for examining mechanisms of signal transduction. Moreover, the evidence provided suggests a novel paracrine signaling pathway for epithelia, which previously were thought to communicate exclusively via gap junctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our previous studies have shown that stimulation of the anterior ventral third ventricular region increases atrial natriuretic peptide (ANP) release, whereas lesions of this structure, the median eminence, or removal of the neural lobe of the pituitary block ANP release induced by blood volume expansion (BVE). These results indicate that participation of the central nervous system is crucial in these responses, possibly through mediation by neurohypophysial hormones. In the present research we investigated the possible role of oxytocin, one of the two principal neurohypophysial hormones, in the mediation of ANP release. Oxytocin (1-10 nmol) injected i.p. caused significant, dose-dependent increases in urinary osmolality, natriuresis, and kaliuresis. A delayed antidiuretic effect was also observed. Plasma ANP concentrations increased nearly 4-fold (P < 0.01) 20 min after i.p. oxytocin (10 nmol), but there was no change in plasma ANP values in control rats. When oxytocin (1 or 10 nmol) was injected i.v., it also induced a dose-related increase in plasma ANP at 5 min (P < 0.001). BVE by intra-atrial injection of isotonic saline induced a rapid (5 min postinjection) increase in plasma oxytocin and ANP concentrations and a concomitant decrease in plasma arginine vasopressin concentration. Results were similar with hypertonic volume expansion, except that this induced a transient (5 min) increase in plasma arginine vasopressin. The findings are consistent with the hypothesis that baroreceptor activation of the central nervous system by BVE stimulates the release of oxytocin from the neurohypophysis. This oxytocin then circulates to the right atrium to induce release of ANP, which circulates to the kidney and induces natriuresis and diuresis, which restore body fluid volume to normal levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of extracellular application of arginine vasopressin (AVP) upon membrane currents in L6 skeletal myocytes was investigated using the whole-cell configuration of the patch-clamp technique. At O mV AVP produced large amplitude, transient outward currents that reversed when the clamping potential was changed to -100 mV (negative to EK) The effects of alterations in the extracellular K+ concentration upon the current reversal potential suggested that the current elicited by AVP was carried mainly by K+ ions. Intracellular dialysis with 10 μM inositol 1,4,5-trisphosphate (InsP3) elicited similar currents but only in 6/14 cells. Inclusion of 5 mg ml-1 heparin in the intracellular solutions was ineffective at inhibiting the current responses to AVP. The AVP-induced current was totally abolished when the intracellular EGTA concentration was increased from 0.05 mM to 10 mM or Ca2+ was removed from the extracellular perfusing solution. These results suggest that AVP produces activation of a Ca2+-sensitive K+ conductance in L6 skeletal myocytes by a process dependent upon extracellular Ca2+ and not intracellular Ca2+ release. © 1995 Academic Press. All rights reserved.