760 resultados para VARIATIONAL PROLAPSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Case: A 11 yo girl with Marfan syndrome was referred to cardiac MR (CMR) to measure the size of her thoracic aorta. She had a typical phenotype with arachnodactyly, abnormally long arms, and was tall and slim (156 cm, 28 kg, body mass index 11,5 kg/m2). She complained of no symptoms. Cardiac auscultation revealed a prominent mid-systolic click and an end-systolic murmur at the apex. A recent echocardiogram showed a moderately dilated left ventricle with normal function and a mitral valve prolapse with moderate mitral valve regurgitation. CMR showed a dilatation of the aortic root (38 mm, Z-score 8.9) and a severe prolapse of the mitral valve with regurgitation. The ventricular cavity was moderately dilated (116 ml/m2) and its contraction was hyperdynamic (stroke volume (SV): 97 ml; LVEF 72%, with the LV volumes measured by modified Simpson method from the apex to the mitral annulus). In this patient however, the mitral prolapse was characterized by a severe backward movement of the valve toward the left atrium (LA) in systole and the dyskinetic movement of the atrioventricular plane caused a ventricularisation of a part of the LA in systole (Figure). This resulted in a significant reduction of LVEF: more than ¼ of the apparent SV was displaced backwards into the ventricularized LA volume, reducing the effective LVEF to 51% (effective SV 69ml). Moreover, by flow measurement, the SV across the ascending aorta was 30 ml (cardiac index 2.0 l/min/m2) allowing the calculation of a regurgitant fraction across the mitral valve of 56%, which was diagnostic for a severe mitral valve insufficiency. Conclusion: This case illustrates the phenomenon of a ventricularisation of the LA where the severe prolapse gives the illusion of a higher attachement of the mitral leaflets within the atrial wall. Besides the severe mitral regurgitation, this paradoxical backwards movement of the valve causes an intraventricular unloading during systole reducing the apparent LVEF of 72% to an effective LVEF of only 51%. In addition, forward flow fraction is only 22% after accounting for the regurgitant volume, as well. This combined involvement of the mitral valve could explain the discrepancy between a low output state and an apparently hyperdynamic LV contraction. Due to its ability to precisely measure flows and volumes, CMR is particularly suited to detect this phenomenon and to quantify its impact on the LV pump function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Extended Kalman Filter (EKF) and four dimensional assimilation variational method (4D-VAR) are both advanced data assimilation methods. The EKF is impractical in large scale problems and 4D-VAR needs much effort in building the adjoint model. In this work we have formulated a data assimilation method that will tackle the above difficulties. The method will be later called the Variational Ensemble Kalman Filter (VEnKF). The method has been tested with the Lorenz95 model. Data has been simulated from the solution of the Lorenz95 equation with normally distributed noise. Two experiments have been conducted, first with full observations and the other one with partial observations. In each experiment we assimilate data with three-hour and six-hour time windows. Different ensemble sizes have been tested to examine the method. There is no strong difference between the results shown by the two time windows in either experiment. Experiment I gave similar results for all ensemble sizes tested while in experiment II, higher ensembles produce better results. In experiment I, a small ensemble size was enough to produce nice results while in experiment II the size had to be larger. Computational speed is not as good as we would want. The use of the Limited memory BFGS method instead of the current BFGS method might improve this. The method has proven succesful. Even if, it is unable to match the quality of analyses of EKF, it attains significant skill in forecasts ensuing from the analysis it has produced. It has two advantages over EKF; VEnKF does not require an adjoint model and it can be easily parallelized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the results of sacrospinous colpopexy surgery associated with anterior colporrhaphy for the treatment of women with post-hysterectomy vaginal vault prolapse. Methods This prospective study included 20women with vault prolapse, PelvicOrgan Prolapse Quantification System (POP-Q) stage≥2, treated between January 2003 and February 2006, and evaluated in a follow-up review (more than one year later). Genital prolapse was evaluated qualitatively in stages and quantitatively in centimeters. Prolapse stage < 2 was considered to be the cure criterion. Statistical analysis was performed using the Wilcoxon test (paired samples) to compare the points and stages of prolapse before and after surgery. Results Evaluation of the vaginal vault after one year revealed that 95% of subjects were in stage zero and that 5% were in stage 1. For cystocele, 50% were in stage 1, 10% were in stage 0 (cured) and 40% were in stage 2. For rectocele, three women were in stage 1 (15%), one was in stage 2 (5%) and 16 had no further prolapse. The most frequent complication was pain in the right buttock, with remission of symptoms in all three cases three months after surgery. Conclusions In this retrospective study, the surgical correction of vault prolapse using a sacrospinous ligament fixation technique associatedwith anterior colporrhaphy proved effective in resolving genital prolapse. Despite the low complication rates, there was a high rate of cystocele, which may be caused by posterior vaginal shifting due to either the technique or an overvaluation by the POP-Q system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current thesis manuscript studies the suitability of a recent data assimilation method, the Variational Ensemble Kalman Filter (VEnKF), to real-life fluid dynamic problems in hydrology. VEnKF combines a variational formulation of the data assimilation problem based on minimizing an energy functional with an Ensemble Kalman filter approximation to the Hessian matrix that also serves as an approximation to the inverse of the error covariance matrix. One of the significant features of VEnKF is the very frequent re-sampling of the ensemble: resampling is done at every observation step. This unusual feature is further exacerbated by observation interpolation that is seen beneficial for numerical stability. In this case the ensemble is resampled every time step of the numerical model. VEnKF is implemented in several configurations to data from a real laboratory-scale dam break problem modelled with the shallow water equations. It is also tried in a two-layer Quasi- Geostrophic atmospheric flow problem. In both cases VEnKF proves to be an efficient and accurate data assimilation method that renders the analysis more realistic than the numerical model alone. It also proves to be robust against filter instability by its adaptive nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to treating large Z systems by quantum Monte Carlo has been developed. It naturally leads to notion of the 'valence energy'. Possibilities of the new approach has been explored by optimizing the wave function for CuH and Cu and computing dissociation energy and dipole moment of CuH using variational Monte Carlo. The dissociation energy obtained is about 40% smaller than the experimental value; the method is comparable with SCF and simple pseudopotential calculations. The dipole moment differs from the best theoretical estimate by about 50% what is again comparable with other methods (Complete Active Space SCF and pseudopotential methods).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cutoff wavenumbers of higher order modes in circular eccentric guides are computed with the variational analysis combined with a conformal mapping. A conformal mapping is applied to the variational formulation, and the variational equation is solved by the finite-element method. Numerical results for TE and TM cutoff wavenumbers are presented for different distances between the centers and ratio of the radii. Comparisons with numerical results found in the literature validate the presented method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of stability problems is relevant to the study of structure of a physical system. It 1S particularly important when it is not possible to probe into its interior and obtain information on its structure by a direct method. The thesis states about stability theory that has become of dominant importance in the study of dynamical systems. and has many applications in basic fields like meteorology, oceanography, astrophysics and geophysics- to mention few of them. The definition of stability was found useful 1n many situations, but inadequate in many others so that a host of other important concepts have been introduced in past many years which are more or less related to the first definition and to the common sense meaning of stability. In recent years the theoretical developments in the studies of instabilities and turbulence have been as profound as the developments in experimental methods. The study here Points to a new direction for stability studies based on Lagrangian formulation instead of the Hamiltonian formulation used by other authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have implemented our new procedure for computing Franck-Condon factors utilizing vibrational configuration interaction based on a vibrational self-consistent field reference. Both Duschinsky rotations and anharmonic three-mode coupling are taken into account. Simulations of the first ionization band of Cl O2 and C4 H4 O (furan) using up to quadruple excitations in treating anharmonicity are reported and analyzed. A developer version of the MIDASCPP code was employed to obtain the required anharmonic vibrational integrals and transition frequencies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude-height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet- based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate results is found for the model domain used. Evidence is found of a trade-off between the localization of features in positional and spectral spaces when the number of bands is changed. By examining implied covariance diagnostics, the wavelet-based schemes are found, on the whole, to give results that are closer to diagnostics found from the explicit matrix than from the nonwavelet scheme. Even though the nature of the covariances has the right qualities in spectral space, variances are found to be too low at some wavenumbers and vertical correlation length scales are found to be too long at most scales. The wavelet schemes are found to be good at resolving variations in position and scale-dependent horizontal length scales, although the length scales reproduced are usually too short. The second of the wavelet-based schemes is often found to be better than the first in some important respects, but, unlike the first, it has no exact inverse transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation of four-dimensional variational data assimilation allows the incorporation of constraints into the cost function which need only be weakly satisfied. In this paper we investigate the value of imposing conservation properties as weak constraints. Using the example of the two-body problem of celestial mechanics we compare weak constraints based on conservation laws with a constraint on the background state.We show how the imposition of conservation-based weak constraints changes the nature of the gradient equation. Assimilation experiments demonstrate how this can add extra information to the assimilation process, even when the underlying numerical model is conserving.